CHAPTER

3

ARM, MOTOROLA, AND INTEL
INSTRUCTION SETS

CHAPTER OBJECTIVES

In this chapter, which has three independent parts. you will learn
about the following instruction set architectures:

e ARM (Part 1)

*« Motorola 68000 (Part 1)

e Intel IA-32 Pentium (Part 11I)

103

104

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

The basic ideas of instruction sets. addressing modes. and instruction execution were
introduced in Chapter 2. Assembly language representation for machine instructions
and programs was used to present a number of program examples. In this chapter.
we study how these basic ideas have been implemented in ARM., Motorola 68000, and
Intel IA-32 ISAs. The ARM instruction set exemplifies RISC design. and the 68000 and
TA-32 instruction sets illustrate the CISC design style. The three parts of this chapter.
one for each instruction set, are independent complete units. The generic programs
presented in Chapter 2 are coded in each of the three instruction sets. It is important
to have a good understanding of the full discussion of basic ideas and programs in
Chapter 2 because the corresponding discussions here are more brief. Appendices B.
C, and D give concise summaries of the three ISAs, and contain more detail than is
provided here in Chapter 3.

PART I
THE ARM EXAMPLE

Advanced RISC Machines (ARM) Limited has designed a family of microprocessors,
and it licenses the designs to other companies for chip tabrication and use in computer
products and embedded systems. The ARM company is relatively new. having evolved
out of the Acorn Computers company that developed processor designs in the early
1980s. The main use for ARM microprocessors is in low-power and low-cost embedded
applications such as mobile telephones. communication modems, automotive engine
management systems. and hand-held digital assistants [1]. The book by Furber [2]
contains a wealth of information on ARM design and implementation: the Clements
text [3] uses ARM as a major example. and the book by van Someren and Atack
[4] describes assembly language programming for ARM. Detailed information is also
available at the ARM web site [5]. All ARM processors share the same basic machine
instruction set. The version used here is the one implemented by the ARM7 processor.
Later versions added features that are not relevant for the level of discussion in this
chapter. In Chapter 11. we describe some of the added features in these later versions of
the architecture. The programs from Chapter 2 are presented here in the ARM assembly
language in order to illustrate various aspects of the ARM architecture.

3.1 REGISTERS, MEMORY ACCESS, AND DATA TRANSFER

In the ARM architecture, memory is byte addressable, using 32-bit addresses. and the
processor registers are 32 bits long. Two operand lengths are used in moving data
between the memory and the processor registers: bytes (8 bits) and words (32 bits).
Word addresses must be aligned, that is. they must be a multiple of 4. Both little-endian
and big-endian memory addressing is supported. (See Section 2.2.2.) The choice is
determined by an external input control line to the processor. When a byte is loaded
from memory into a processor register or stored from a register into the memory, it is
always located in the low-order byte position of the register.

Memory is accessed only by Load and Store instructions. All arithmetic and logic
instructions operate only on data in processor registers. This arrangement is a basic

3.1 REGISTERS, MEMORY ACCESS, AND DATA TRANSFER

feature of RISC architectures. Its implications for simplicity of processor design and
performance will be examined in Chapter 8.

3.1.1 REGISTER STRUCTURE

The processor registers used by application programs are shown in Figure 3.1. There
are sixteen 32-bit registers labeled RO through R15, which consist of fifteen general
purpose registers (RO through R14) and the Program Counter (PC) register. R15. The
general purpose registers can hold either memory addresses or data operands. The
Current Program Status Register (CPSR). or simply the Status register. holds the con-
dition code flags (N. Z, C, V). interrupt disable flags, and processor mode bits. The
information represented by the condition code flags is described in Section 2.4.6. The
use of processor mode bits and interrupt disable bits will be described in conjunction
with input/output operations and interrupts in Chapter 4. Here, we will assume that the
processor is in User mode and is executing an application program.

There are 15 additional general-purpose registers called the banked registers. They
are duplicates of some of the RO to R14 registers. They are used when the processor
switches into Supervisor or Interrupt modes of operation. Saved copies of the Status
register are also available in these nonUser modes. These banked registers and Status
register copies will also be discussed in Chapter 4.

31 0
RO
R1 15
General
purpose
registers
R14
31 0
R15 (PC) | l Program counter
31 30 29 28 7 6 4 0
. Status
CPSR I] | [l I | . I register
N - Negative —
Z - Zero l— Processor mode bits
C-Cary —— Interrupt disable bits
V- Overtlow
N

Condition code flags

Figure 3.1 ARM register structure.

105

106

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

31 28 27 2019 16 15 12 11 43 0

Condition OP code Rn Rd Other info Rin

Figure 3.2 ARM instruction format.

3.1.2 MEMORY ACCESS INSTRUCTIONS AND ADDRESSING MODES

Each instruction in the ARM architecture is encoded into a 32-bit word in a reasonably
uniform way. typical of RISC designs. Access to memory is provided only by Load
and Store instructions. The basic encoding format for these instructions, as well as for
the Move, Arithmetic, and Logic instructions is shown in Figure 3.2. More detail is
given in Appendix B. An instruction specifies a conditional execution code (Condition).
the OP code, two or three registers (Rn. Rd, and Rm), and some other information. If
register Rm is not needed, the “*Other info™ field extends to bit b. In a Load instruction,
the operand is transterred from the memory into the general-purpose register named
in the 4-bit Rd field. In a Store instruction. the operand is transferred from Rd into the
memory. If the operand is a byte, it is always located in the low-order byte position of
the register, and in a Load instruction. the high-order 24 bits of the register are filled
with zeros.

Conditional Execution of Instructions

A distinctive and somewhat unusual feature of ARM processors is that all instruc-
tions are conditionally executed, depending on a condition specified in the instruction.
The instruction is executed only if the current state of the processor condition code
flags satisfies the condition specified in bits b3j_»g of the instruction. Otherwise, the
processor proceeds to the next instruction. One of the conditions is used to indicate
that the instruction is always executed. The usefulness of conditional execution will
be seen in the examples in Section 3.7. For now, we will ignore this feature and assume
that the condition field of the instruction contains the “always executed” code.

Memory Addressing Modes

The basic method for addressing memory operands is to generate the effective
address, EA, of the operand by adding a signed offset to the contents of a base register
Rn, which is specified in the instruction as shown in Figure 3.2. The magnitude of the
offset is either an immediate value, contained in the low-order 12 bits of the instruction,
or it is the contents of a third register, R/, named by the low-order four bits, b3 . The
sign (direction) of the offset is contained in the OP-code field.

For example. the Load instruction

LDR Rd.[Rn.#offset]

specifies the oftset (expressed as a signed number) in the immediate mode and performs
the operation

Rd < [[Rn] + offset]

3.1 REGISTERS, MEMORY ACCESS, AND DATA TRANSFER

Note that the destination register, Rd, is listed first. This is opposite to the order used
in Chapter 2. The instruction

LDR Rd.[Rn.Rm]
performs the operation
Rd < [[Rn] + [Rm]]

Since the contents of Rm are the magnitude of the offset, Rm must be preceded by a
minus sign if a negative offset is desired. In Chapter 2, these two addressing modes
were defined as the Index and Base with index modes, respectively. An offset of zero
does not have to be specified explicitly. Hence, the instruction

LDR Rd,[Rn]
performs the operation
Rd <« [[Rn]]

using the addressing mode that was defined as the Indirect mode in Chapter 2.

The OP-code mnemonic LDR specifies that a 32-bit word is loaded from the
memory into a register. A byte operand can be loaded into the low-order byte position
of a register by using the mnemonic LDRB. The higher order bits are filled with zeros.

Store instructions have the mnemonics STR and STRB. For example, the instruction

STR Rd,[Rn]
performs the operation
[Rn] < [Rd]

transferring a word operand into the memory. The STRB instruction transfers the byte
contained in the low-order end of Rd.

ARM documents refer to all of these modes, and others that we will describe shortly,
as indexed addressing modes. The form that we have used in these first examples is
called the Pre-indexed addressing mode because the effective address of the operand is
generated by adding the offset to the contents of the base register Rn. The contents of
register Rn are not changed. Addressing modes that are similar to the Autodecrement
and Autoincrement modes that were discussed in Chapter 2 are also provided. They are
called Pre-indexed with writeback and Post-indexed, respectively.

Definitions of all three modes are given as:

Pre-indexed mode — The effective address of the operand is the sum of the contents
of the base register Rn and an offset value.

Pre-indexed with writeback mode — The effective address of the operand is gener-
ated in the same way as in the Pre-indexed mode, and then the effective address
is written back into Ra.

Post-indexed mode — The effective address of the operand is the contents of Ra.
The offset is then added to this address and the result is written back into Ra.

Table 3.1 specifies the assembly language syntax for these addressing modes, and

107

108 CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

Table 3.1 ARM indexed addressing modes

Name Assembler syntax Addressing function

With immediate offset:

Pre-indexed {Rn, #offset] EA = [Rn] + offset

Pre-indexed [Ru, #offset]! EA = [Rn] + offset;
with writeback Ra <« [Rn}] + offset

Post-indexed {Rn], #offset EA = [Rn];

Rn < [Ra] + offset

With offset magnitude in Rm:

Pre-indexed [Ra. & Rm, shift] EA = [Rn] & [Rm] shifted
Pre-indexed [Rn. &= Rm, shift]! EA = [Rn] = [Rm] shifted;
with writeback Rn <« [Rn] # [Rm] shifted
Post-indexed {Rn], £ Rm, shift EA = [Rn):
Rn <« [Rn] 4 [Rm}] shifted
Relative Location EA = Location
(Pre-indexed with = {PC] + offset

immediate offset)

EA = effective address

offset = a signed number contained in the instruction

shift = direction #integer
where direction is LSL for left shift or LSR for right shift, and
integer is a 5-bit unsigned number specifying the shift amount

+Rm = the offset magnitude in register Rim can be added to or subtracted from the contents
of base register R

gives expressions for the calculation of the effective address. EA, and the writeback
operations. The exclamation mark signifies writeback in the Pre-indexed addressing
mode. The Post-indexed mode always involves writeback, so the exclamation mark is
not needed. Note that pre- and post-indexing are distinguished by the way the square
brackets are used. When only the base register is enclosed in square brackets, its con-
tents are used as the effective address. The offset is added to the register contents after
the operand is accessed. In other words, post-indexing is specified. This is a generalized
form of the Autoincrement addressing mode described in Section 2.5. When both the
base register and the offset are placed inside the square brackets. the sum is used as the
effective address of the operand, that is, pre-indexing is used. If writeback is to be per-
tormed, it must be indicated by the exclamation mark (!). Pre-indexing with writeback
is a generalization of the Autodecrement addressing mode discussed in Section 2.5.

In all three addressing modes, the offset may be given as an immediate value in
the range £4095. Alternatively, the magnitude of the offset may be specified as the
contents of the third register. Rm. with the sign (direction) of the offset specified by a
+ prefix on the register name. For example, the instruction

LDR ROJ[RI.—R2]!

3.1 REGISTERS, MEMORY ACCESS, AND DATA TRANSFER

performs the operation
RO « [[R1] — [R2]]

The effective address of the operand, [R1] — [R2], is then loaded into R1 because
writeback is specified by the exclamation mark.

When the offset is given in a register, it may be scaled by a power of 2 by shifting
to the right or to the left. This is indicated in the assembly language by placing the
shift direction, LSL for left shift or LSR for right shift, and the shift amount, after the
register name Rm, as shown in Table 3.1. The amount of the shift is specified by an
immediate value in the range 0 to 31. For example, the contents of R2 in the example
above may be multiplied by 16 before being used as an offset as follows:

LDR RO,[R1.—R2,LSL #4]!
This instruction will perform the operation
RO « [[R1] —16 x [R2]]

and will then load the effective address into R1.

The Program Counter, PC, may be used as the Base register Ra. In this case, the
Relative addressing mode, as described in Section 2.5, is implemented. The assembler
determines the immediate offset as the signed distance between the address of the
operand and the contents of the updated PC. When the effective address is calculated at
instruction execution time, the contents of the PC will have been updated to the address
two words (8 bytes) forward from the instruction containing the Relative addressing
mode. The reason for this is related to pipelined execution of instructions, which will
be discussed in Chapter 8.

An example of the Relative mode is shown in Figure 3.3a. The address of the
operand, given symbolically as ITEM in the instruction. is 1060. There is no Absolute
addressing mode available in the ARM architecture. Therefore, when the address of
an operand is given in this way in the assembly language, the assembler always uses
the Relative addressing mode. This is implemented by the Pre-indexed mode with an
immediate offset, using PC as the base register. As shown in the figure, the offset
calculated by the assembler is 52 because the updated PC will contain 1008 when the
offset is added to it during program execution, and the effective address to be generated
is 1060 = 1008 + 52. The operand must be within the range of 4095 bytes forward
or backward from the updated PC. If the operand address given in the instruction is
outside this range, an error is indicated by the assembler and a different addressing
mode must be used to access the operand.

Figure 3.3b shows an example of the Pre-indexed mode with the offset contained
in register R6 and the base value contained in RS. The Store instruction (STR) stores
the contents of R3 into memory word location 1200.

The examples shown in Figure 3.4 illustrate the usefulness of the writeback feature
in the Post-indexed and Pre-indexed addressing modes. Figure 3.4a shows the first three
numbers of a list of 25 numbers that are spaced 25 words apart, starting at memory
address 1000. They comprise the first row of a 25 x 25 matrix of numbers stored in
column order. The first number of the first row of the matrix is stored in word location
1000. The numbers at addresses 1100, 1200. ..., 3400 are successive numbers of the

109

110 CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

Memory Ly word (4 bytes)———=f
address
1000 LDR RI.ITEM
1004 -
1008 N —l— updated [PC] = 1008
. . 52 = offset
ITEM = 1060 Operand J—
(a) Relative addressing mode
STR R3.[R5.R6] 1000 RS
. Base register
200 R6
1000 T Oftset register
: . 200 = offset
1200 Operand —L
(b) Pre-indexed addressing mode
Figure 3.3 Examples of ARM memory addressing modes.
firstrow. The 25 memory locations 1000. 1004. 1008, 1096 contain the first column

of the matrix.

Successive numbers in the first row of the matrix can be accessed conveniently
using the Post-indexed addressing mode with writeback, with the offset contained in
a register. Suppose that R2 is used as the base register and that it contains the initial
address value 1000. Register R10 is used to hold the oftset. and it is loaded with the

Memory
address

1000

T

100=25x4

4%; 1100

100=25x4

‘L 1200

2008

2012

3.1 REGISTERS, MEMORY ACCESS. AND DATA TRANSFER

le————word (4 bytes) ————mf

6 1000 R2
. Base register
25 R10
-17
Offset register
Load instruction:
321 LDR RI1.[R2|.RI0O.LSL #2
(a) Post-indexed addressing with writeback
2012 RS
Base register (Stack pointer)
27
27 RO

alter execution of

Push instruction

Push instruction:

STR RO.[R5.#-4]!

(b) Pre-indexed addressing with writeback

Figure 3.4 ARM memory addressing modes involving writeback.

value 25. The instruction

LDR RI1.,[R2],R10.LSL #2

can then be used in a program loop that loads register R1 with successive elements
of the first row of the matrix on successive passes through the loop. Let us examine
how this works, step by step. The first time that the Load instruction is executed. the
effective address is [R2] = 1000. Therefore. the number 6, at this address, is loaded
into R1. Then, the writeback operation changes the contents of R2 from 1000 to 1100
so that it points to the second number. —17. It does this by shifting the contents, 25, of

111

112

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

the offset register R10 left by two bit positions and then adding them to the contents
of R2. The contents of R10 are not changed in this process. The left shift is equivalent
to multiplying 25 by 4. generating the required offset 100. After this offset is added
to the contents of R2. the new address 1100 is written back into R2. When the Load
instruction is executed on the second pass through the loop. the second number, —17.
is loaded into RI. The third number. 321, is loaded into R1 on the third pass. and
SO on.

This example involved adding the shifted contents of the offset register to the
contents of the base register. As indicated in Table 3.1. the shifted offset can also be
subtracted from the contents of the base register. Any shift distance in the range 0
through 31 can be selected. and either right or left shifting can be specified.

Figure 3.4b shows an example of pushing the contents. 27. of register RO onto a
stack. Register RS 1s used as the stack pointer. Initially. it contains the address 2012
of the current TOS (top-of-stack) element. The Pre-indexed addressing mode with
writeback. using an immediate offset, can be used to perform the Push operation with
the instruction

STR RO.[RS#—-4]!

The immediate offset —4 is added to the contents. 2012, of R5 and written back into
RS. This new TOS location, 2008, is used as the effective address for the Store operation.
The contents, 27. of register RO are stored at location 2008.

Load/Store Multiple Operands

In addition to the Load and Store instructions for single operands. there are two
instructions for loading and storing multiple operands. They are called Block transfer
instructions. Any subset of the general purpose registers can be loaded or stored. Only
word operands are allowed. and the OP codes used are LDM (Load Multiple) and STM
(Store Multiple). The memory operands must be in successive word locations. All of the
forms of pre- and post-indexing with and without writeback are available. They operate
on a Base register Rn specified in the instruction. The offset magnitude is always 4 in
these instructions so it does not have o be specified explicitly in the instruction. The
list of registers must appear in increasing order in the assembly language expression
for the instruction. As an example. assume that register R10 is the Base register and
that it contains the value 1000 initially. Then. the instruction

LDMIA RI10!{RO.RI.R6.R7}

transfers the words from locations 1000. 1004. 1008. and 1012 into registers RO, R1,
R6. and R7. leaving the address value 1016 in R10 after the last transfer. The suffix 1A
in the OP code indicates “Increment After.” corresponding to post-indexing. We will
discuss the Load/Store Multiple instructions further in Section 3.6 in conjunction with
implementing subroutines. where they are used to save and restore registers on a stack
in an etficient way.

3.2 ARITHMETIC AND LOGIC INSTRUCTIONS
3.1.3 REGISTER MOVE INSTRUCTIONS

It is often necessary to copy the contents of one register into another register or to load
an immediate value into a register. The Move instruction

MOV Rd.Rm

uses the format shown in Figure 3.2 to copy the contents of register Rim into register
Rd. An immediate operand in the low-order 8 bits of the instruction can also be loaded
into register Rd by the Move instruction. For example.

MOV RO.#76

places the immediate value 76 into register RO. In both forms of the Move instruction.
the source operand can be shifted before being placed in the destination register.

3.2 ARITHMETIC AND LOGIC INSTRUCTIONS

The ARM instruction set has a number of instructions for arithmetic and logic opera-
tions on operands that are either contained in the general-purpose registers or given as
immediate operands in the instruction itself. Memory operands are not allowed for these
instructions. There are instructions for different forms of addition and subtraction, and
there are two instructions for multiplication. There are instructions for the AND. OR,
NOT. XOR. and Bit-Clear logic operations. Instructions such as Compare are provided
to set condition code flags based on the results from arithmetic or logic operations on
two operands. They do not store the actual results in a register. The format for most of
these instructions is shown in Figure 3.2.

3.2.1 ARITHMETIC INSTRUCTIONS
The basic assembly language expression for arithmetic instructions is
OPcode Rd.Rn.Rm

where the operation specified by the OP code is performed using the operands in
general-purpose registers Riz and Rim. The result is placed in register Rd. For example.
the instruction

ADD RO.R2.R4
performs the operation

RO « [R2] + [R4]
and the instruction

SUB RO.R6.R5

113

114

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

performs the operation
RO «- [R6] — [R5]

Instead of being contained in register Rm. the second operand can be given in the
Immediate mode. Thus.

ADD RO.R3.#17
performs the operation
RO « [R3] + 17

The immediate value is contained in the 8-bit field in bits b5 of the instruction.

The second operand can be shifted or rotated before being used in the operation.
When a shift or rotation is required, it is specified last in the assembly language
expression for the instruction. The instruction

ADD RORI.R5LSL #4

operates as follows: The second operand. which is contained in register RS, is shifted
left 4 bit positions (equivalent to [RS] x 16), and it is then added to the contents of
register R1; the sum is placed in register RO.

Two versions of a Multiply instruction are provided. The first version multiplies
the contents of two registers and places the low-order 32-bits of the product in a third
register. The high-order bits of the product, if there are any, are discarded. For example.
the instruction

MUL RO.R1.R2
performs the operation
RO « [R1] x [R2]

The second version specifies a fourth register whose contents are added to the product
before storing the result in the destination register. Hence, the instruction

MLA RO.RI.R2.R3
performs the operation
RO <« [R1] x [R2] + [R3]

This is called a Multiply-Accumulate operation. It is often used in numerical algorithms
for digital signal processing. We will see an example of this type of application in
Section 3.7. The fourth register is encoded in the Other information field of Figure 3.2.
There are no provisions made for shifting or rotating any of the operands before they are
used in the two Multiply instructions. Some versions of the ARM ISA accommodate
double-length products (64 bits). (See Chapter 11.)

Operand Shift Operations

We noted earlier that one of the distinctive features of the ARM instruction set
is that all instructions are executed conditionally. Another distinctive feature is the
shifting and rotation operations that are incorporated into most instructions. In most

3.2 ARITHMETIC AND LOGIC INSTRUCTIONS

other computer instruction sets, shifting operations are done using separate instructions.
This is the case for the Motorola 68000 and the Intel IA-32 processors described in
Parts I1 and 11l of this chapter. By incorporating shifting and rotation operations into
instructions, as needed, the ARM architecture saves code space and can potentially
improve execution time performance relative to more conventional processor designs.
This feature is implemented using a barrel shifter circuit in the data path between the
registers and the arithmetic and logic unit in the processor. Details of the shifting and
rotation operations available, and their encoding in the instruction format, are given in
Appendix B.

3.2.2 LOGIC INSTRUCTIONS

The logic operations AND. OR, XOR, and Bit-Clear are implemented by instructions
with the OP codes AND., ORR. EOR. and BIC. They have the same format as the
arithmetic instructions. The instruction

AND Rd.Rn.Rm
performs the operation
Rd < [Rn] A [Rm]
which is a bitwise logical AND between the operands in registers Rn and Rm. For

example. if register RO contains the hexadecimal pattern 02FA62CA and R1 contains
the pattern OOOOFFFF. then the instruction

AND RO.RO.RI

will result in the pattern 000062CA being placed in register RO.

The Bit-Clear instruction (BIC) is closely related to the AND instruction. It com-
plements each bit in operand Rm before ANDing them with the bits in register Rn.
Using the same RO and R1 bit patterns as in the above example. the instruction

BIC RO.RO.RI
results in the pattern 02FA0000 being placed in RO.
The Move Negative instruction, with the OP-code mnemonic MVN, complements
the bits of the source operand and places the result in Rd. 1f the contents of R3 are the
hexadecimal pattern OFOFOFOF, then the instruction

MVN RO.R3

places the result FOFOFOFO in register RO.

115

116

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

LDR RO.POINTER Load address LOC into RO.
LDRB RI.[R0] Load ASCII characters

LDRB R2.[R0O.#1] into R1 and R2.

AND R2.R2.#&F Clear high-order 23 bits of R2.
ORR R2.R2.RLLSL #1 Or [R1] shifted left into [R2].
STRB R2.PACKED Store packed BCD digits

into PACKED.

Figure 3.5 An ARM program for packing two 4-bit decimal digits into a byte.

Digit-Packing Program

Figure 3.5 shows an ARM program for packing two 4-bit decimal digits into a
memory byte location. The generic version of this program is shown in Figure 2.31
and is described in Section 2.10.2. The decimal digits. represented in ASCII code. are
stored in byte locations LOC and LOC + 1. The program packs the corresponding 4-bit
BCD codes into a single byte location PACKED.

The first Load instruction in the program in Figure 3.5 assumes that the address
LOC is stored in memory at address POINTER. As we will see in Section 3.4, an
assembler directive can be used to place LOC in POINTER. This method of loading
the address LOC into RO is needed because a 32-bit address cannot be included as
an immediate operand in an instruction. Location POINTER points to the BCD digit
characters stored in successive byte locations. The two ASCII characters containing the
BCD digits in their low-order four bits are loaded into the low-order byte positions of
registers R1 and R2 by the next two Load instructions. The And instruction clears the
high-order 28 bits of R2 to zero. leaving the second BCD digit in the four low-order
bit positions. The Or instruction then shifts the first BCD digit in R1 to the left four
positions and places it to the left of the second BCD digit in R2. The packed digits in
the low-order byte of R2 are then stored into PACKED.

3.3 BRANCH INSTRUCTIONS

Conditional branch instructions contain a signed, 2’s-complement, 24-bit offset that is
added to the updated contents of the Program Counter to generate the branch target
address. The format for the branch instructions is shown in Figure 3.6a. and an example
is given in Figure 3.65. The BEQ instruction (Branch if Equal to 0) causes a branch if
the Z flag is set to 1.

The condition to be tested to determine whether or not branching should take place
1s specified in the high-order 4 bits, h3,_»s. of the instruction word. A Branch instruction
is executed in the same way as any other ARM instruction. that is. it is executed only
if'the current state of the condition code flags corresponds to the condition specified in
the Condition field of the instruction.

3.3 BRANCH INSTRUCTIONS

31 28 27 24 23 0

Condition OP code Offset

(a) Instruction format

1000 BEQ LOCATION

1004

updated [PC] = 1008

r

Ottset =92

_L LOCATION = 1100 Branch target instruction

(b) Determination of a branch target address

Figure 3.6 ARM branch instructions.

At the time that the branch target address is computed. the contents of the PC have
been updated to contain the address of the instruction that is two words beyond the
Branch instruction itself. If the Branch instruction is at address location 1000. and the
branch target address is 1100. as shown in Figure 3.6b. then the offset has to be 92
because the contents of the updated PC will be 1000 + 8 = 1008 when address 1100
is computed.

3.3.1 SETTING CONDITION CODES

Some instructions, such as Compare. given by
CMP Rn.Rm
which performs the operation
[Rn] — [Rm]

have the sole purpose of setting the condition code flags based on the result of the
subtraction operation. On the other hand. the arithmetic and logic instructions affect
the condition code flags only if explicitly specified to do so by a bit in the OP-code

118

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

LDR R1.N Load count into R1.

LLDR R2.POINTER Load address NUM1T into R2.

MOV RO#0 Clear accumulator RO.
LOOP LDR R3.[R2l.#4 Load next number into R3.

ADD RO.RO.R3 Add munber into RO.

SUBS RI1.R1.#1 Decrement loop counter R1.

BGT LOOP Branch back if not done.

STR R0O.SUMN Store sum.

Figure 3.7 An ARM program for adding numbers.

field. This is indicated by appending the suffix S to the assembly language OP-code
mnemonic. For example, the instruction

ADDS RO.RI1.R2
sets the condition code flags, but
ADD RO.RI1.R2

does not.

3.3.2 A LOOP PROGRAM FOR ADDING NUMBERS

Figure 3.7 shows a loop program for adding a list of numbers, patterned after the
program in Figure 2.16. The load and store operations performed by the first, second,
and last instructions use the Relative addressing mode. This assumes that the memory
locations N, POINTER, and SUM are within the range reachable by the offset relative
to the PC. Memory location POINTER contains the address NUMI of the first of the
numbers to be added. N contains the number of entries in the list, and SUM is used to
store the sum. The Post-indexed addressing mode with writeback in the first instruction
of the loop mirrors the use of the Autoincrement addressing mode in Figure 2.16.

3.4 ASSEMBLY LANGUAGE

The ARM assembly language has assembler directives to reserve storage space, assign
numerical values to address labels and constant symbols. define where program and
data blocks are to be placed in memory. and specify the end of the source program text.
These facilities were described in general in Section 2.6.1.

We illustrate some of the ARM directives in Figure 3.8, which gives a complete
source program for the program of Figure 3.7. The AREA directive. which uses the
argument CODE or DATA,, indicates the beginning of a block of memory that contains

3.4 ASSEMBLY LANGUAGE

Memory Addressing
address or data
label Operation information
Asscmbler directives AREA CODE
ENTRY
Statements that LLDR RI.N
generate LDR R2.POINTER
machine MOV RO.#0
instructions LOOP LDR R3.[R2J.#1
ADD RO.RO.R3
SUBS R1.R1.#1
BGT LOOP
STR RO.SUNI
Asscinbler directives AREA DATA
SUAMI DCD 0
N DCD 5
POINTER DCD NTUNIL
NUM1 DCD 3.-17.27.-12.322
END

Figure 3.8 ARM assembly language source program for the program in
Figure 3.7.

either program instructions or data. The AREA directive actually requires more pa-
rameters to be specified. but they are not relevant for the level of discussion here. The
ENTRY directive specifies that program execution is to begin at the following LDR
instruction.

In the data area. which follows the code area. the DCD directives are used to label
and initialize the data operands. The word locations SUM and N are initialized to (and
5. respectively, by the first two DCD directives. The address NUMI is placed in the
pointer location POINTER by the next DCD directive. The last DCD directive specifies
that the five numbers to be added are placed in successive memory locations. starting
at NUMI.

Constants in hexadecimal notation have a & prefix. and constants in base n. for n
between two and nine. are denoted as n_xyv. For example. 2101 100 denotes a binary
constant. Base ten constants do not need a prefix.

An EQU directive can be used to define symbolic names for constants. For example.
the statement

TEN EQU 10

119

120

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

allows TEN to be used in a program instead of the decimal constant 10. When a number
of registers are used in a program. it is convenient to use symbolic names for them that
relate to their usage. The RN directive is used for this purpose. For example.

COUNTER RN 3

establishes the name COUNTER for register R3. The register names RO to R15, PC
(for R15). and LR (for R14) are predefined by the assembler.

3.4.1 PSEUDO-INSTRUCTIONS

An alternative way of loading the address NUMI into register R2 in Figure 3.8 is also
provided in the assembly language. The pseudo-instruction

ADR Rd.ADDRESS

loads the 32-bit value ADDRESS into Rd. This instruction is not an actual machine
instruction. The assembler chooses appropriate real machine instructions to implement
pseudo-instructions. For example, the combination of the machine instruction

LDR R2.POINTER
and the data declaration directive
POINTER DCD NUMI
that is used in Figure 3.8 is one way to implement the pseudo-instruction
ADR R2NUMI

which would be placed at the position of the LDR instruction in the program. In this
case, the assembler would need to allocate an appropriate data area for the DCD
declaration.

A more efficient way to implement the ADR instruction is possible in this particular
example. and it is the one that would be chosen by the assembler. When the address
value to be loaded by the ADR instruction is within 255 bytes of the current contents
of the PC (R15), the instruction

ADD Rd.R15 #offset

can be used to implement the ADR pseudo-instruction. If this is done in the example
program. the location POINTER is not needed. The assembler implements the ADR
pseudo-instruction with the real machine instruction

ADD R2RI15#28

because NUMI is 28 bytes beyond the updated PC when the ADD instruction is exe-
cuted. This assumes that the data area immediately follows the STR instruction. This is
not actually true because an instruction to return control to the operating system must
follow the STR instruction. but it has been omitted.

3.5 /O OPERATIONS

3.5 1/0 OPERATIONS

The ARM architecture uses memory-mapped 170 as described in Section 2.7. Reading
a character from a keyboard or sending a character to a display can be done using
program-controlled I/0 as described in that section.

Suppose that bit 3 in each of the device status registers INSTATUS (keyboard)
and OUTSTATUS (display) contains the respective control flags SIN and SOUT. Also
assume that the keyboard DATAIN and display DATAOUT registers are located at
addresses INSTATUS + 4 and OUTSTATUS + 4. immediately following the status
register locations. The read and write wait loops can then be implemented as follows.
Assume that address INSTATUS has been loaded into register RI. The instruction
sequence

READWAIT LDR R3.RI]
TST R348
BEQ READWAIT
LDRB R3.[RI.#4]

reads a character into register R3 when a key has been pressed on the keyboard. The test
(TST) instruction performs the bitwise logical AND operation on its two operands and
sets the condition code flags based on the result. The immediate operand 8 has a single
one in the bit 3 position. Therefore. the result of the TST operation will be zero if bit 3
of INSTATUS is zero and will be nonzero if bit 3 is one. signifying that a character is
available in DATAIN. The BEQ instruction branches back to READWAIT if the result
is zero. looping until a key is pressed. which sets bit 3 of INSTATUS to one.

Assuming that address OUTSTATUS has been loaded into register R2. the instruc-
tion sequence

WRITEWAIT LDR R4.[R2]
TST R4 #8
BEQ WRITEWAIT
STRB R3.[R2.#4]

sends the character in register R3 to the DATAOUT register when the display is ready
to receive it.

These two routines can be used to read a line of characters from a keyboard. store
them in the memory, and echo them back to a display. as shown in the program in
Figure 3.9. This program is patterned after the generic program in Figure 2.20. Register
RO is assumed to contain the address of the first byte in the memory area where the line
is to be stored. Registers R1 through R4 have the same usage as in the READWAIT
and WRITEWAIT loops described above. The first Store instruction (STRB) stores the
character read from the keyboard into the memory. The Post-indexed addressing mode
with writeback is used in this instruction to step through the memory area, analogous to
the use of the Autoincrement addressing mode in Figure 2.20. The Test if Equal (TEQ)

121

122 CHAPTER 3 -« ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

READ LDR R3.[R1] Load [INSTATUS] aud
TST R3.#x wait for character.
BEQ READ
LDRB R3.R1.#4] Read the character and
STRB R3.[ROL.#1 store it in memory.

ECHO LDR R4.[R2] Load [OUTSTATUS] and
TST R4#8 wait for display
BEQ ECHO to be ready.

STRB R3.[R2.#4] Send character to display.
TEQ R3.#CR If not carriage return.
BNE READ read more characters.

Figure 3.9 An ARM program that reads a line of characters and displays it.

instruction tests whether or not the two operands are equal and sets the Z condition
code flag accordingly.

3.6 SUBROUTINES

A Branch and Link (BL) instruction is used to call a subroutine. It operates in the same
way as other branch instructions. with one added step. The return address. which is
the address of the next instruction after the BL instruction, is loaded into register R 14.
which acts as a link register. Since subroutines may be nested. the contents of the link
register must be saved on a stack by the subroutine. Register R13 is normally used as
the pointer for this stack.

Figure 3.10 shows the program of Figure 3.7 rewritten as a subroutine. Parameters
are passed through registers. The calling program passes the size of the number list
and the address of the first number to the subroutine in registers R] and R2: and the
subroutine passes the sum back to the calling program in register RO. The subroutine
also uses register R3. Therefore. its contents, along with the contents of the link register
R14. are saved on the stack by the STMFD instruction. The suffix FD in this instruction
specifies that the stack grows toward lower addresses and that the stack pointer R13 is
to be predecremented before pushing words onto the stack. The LDMFD instruction
restores the contents of register R3 and pops the saved return address into the PC (R 15).
performing the return operation automatically.

Figure 3.11a shows the program of Figure 3.7 rewritten as a subroutine with pa-
rameters passed on the stack. The parameters NUM1 and # are pushed onto the stack by
the first four instructions of the calling program. We assume that NUM|1 is contained
in memory location POINTER. Registers RO to R3 serve the same purpose inside the
subroutine as in Figure 3.7. Their contents are saved on the stack by the first instruction
of the subroutine along with the return address in R14. The contents of the stack at

3.6 SUBROUTINES

Calling program

LDR RI1.N
LDR R2.POINTER
BL LISTADD

STR RO.SUMN

Subroutine

LISTADD STMFD RI3I{R3.R14} Save R3 and return address in R14 on
stack. nsing R13 as the stack pointer.

MOV R0O.#0
LOOP LDR R3.[R2].#4
ADD RO.RO.R3
SUBS R1.R1.#1
BGT LOOP

LDMFD RI3L{R3.R15} Restore R3 and load return address
imto PC {R15).

Figure 3.10 Program of Figure 3.7 written as an ARM subroutine; parameters passed
through registers.

various times are shown in Figure 3.11h. After the parameters have been pushed and
the Call instruction (BL) has been executed. the top of the stack is at level 2. It is at
level 3 after all registers have been saved by the first instruction of the subroutine. The
next two instructions load the parameters into registers R1 and R2 using offsets of 20
and 24 bytes into the stack, which reach to n and NUMI. respectively. from level 3.
When the sum has been accumulated in RO, it is inserted into the stack by the Store
instruction (STR), overwriting NUMI.

The last example of subroutines is the case of handling nested calls. Figure 3.12
shows the ARM code for the program of Figure 2.28. The stack frames corresponding
to the first and second subroutines are shown in Figure 3.13. Register R12 is used as
the frame pointer. Symbolic names are used for some of the registers in this example to
aid program readability. Registers R12 (frame pointer). R13 (stack pointer), R14 (link
register), and R15 (program counter), are labeled as FP. SP. LR. and PC, respectively.
The assembler directive RN can be used to define these names.

The structure of the calling program and the subroutines is the same as in Figure
2.28. Aspects that are specific to ARM are as follows. Both the return address and the
old contents of the frame pointer are saved on the stack by the first instruction in each
subroutine. The second instruction sets the frame pointer to point to its saved value. as
shown in Figure 3.13. This is consistent with the frame pointer position in Figures 2.27
and 2.29. The parameters are then referenced at offsets of 8. 12, and so on, as usual.

123

CHAPTER 3

ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

(Assumie top of stack is at level 1 below.)

Calling program

LDR
STR
LDR
STR
BL
LDR
STR
ADD

Subroutine

LISTADD STMFD

RO.POINTER
ROR13.#—4]!
RO.N
ROJR13.4]!
LISTADD
RO.[R13.#4]
RO.SUM
RI13.R13.#8

R13L{RO-R3.R14}

Push NUMI1
on stack.
Push n
on stack.

Move the sum into

menory location SUN.
Remove parameters from stack.

Save registers.

the stack.

LDR R1.[R13.#20] Load parameters
LDR R2.[R13.#24] from stack.
MOV RO.#0
LOOP LDR R3.[R2].#4
ADD RO.RO.R3
SUBS R1.RL.#1
BGT LOOP
STR RO.R13.424] Place sum on stack.
LDMFD R13L.{R0O-R3.R15} Restore registers and return.
(a) Calling program and subroutine
Level 30— (RO
k1]
(R2
R3]
Return address
Level 20—
NUNM1
Level T —
(b) Top of stack at various times
Figure 3.11 Program of Figure 3.7 written as an ARM subroutine; parameters passed on

3.6 SUBROUTINES 125

AMemory
location

Instructions

Comments

Calling program

LDR

2000

200 STR
2008 LDR
2012 STR
2016 BL
2020 LDR
2021 STR
20238 ADD
2032

First subroutine

2100 SUBI STMFEFD

2101 ADD

2108 LDR

2112 LDR
LDR
STR

2160 BL

2161 LDR
STR
LDMNFEFD

Second subroutine
SUB2 STAIED
ADD
LDR

3000

STR
LDMFED

R10.PARAN
R10.[SP.#—1]!
R10.PARAMI
R10.[SP.#—1]!
SUBL
R10.]SP]
R10.RESULT
SP.SP.#8

next instruction

SP!{RO-R3.FP.LR}
FP.SP.#16
RO.[FP.#3]
RL[FD.#12]

R2.PARANS
R2.[SP.#—1]!
SUB2
R2.[SP].# 1

R3.[FP.#3
SPL{RO-R3.FP.PC}

SPL{RO.R1.FP.LR}
FP.SP.#3
RO.[FP.#3]

RI1[FP.#8]
SPL{RO.R1.FP.PC}

Place parameters on stack.

Store SUBI result.

Remove parameters from stack.

Save registers.
Load frame pointer.
Load paramecters.

Place parameter on stack.

Pop SUB2 result into R2.

Place result on stack.
Restore registers and return.

Save registers.
Load frame poiuter.
Load parameter.

Place result on stack.
Restore registers and return.

Figure 3.12 Nested subroutines in ARM assembly language.

126

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

[RO] from SUBI1

[R1] trom SUBI Stack
frame
FP —= [FP] from SUBI > for
second
2164 subroutine
param3

[RO] from Main

[R1} trom Main

[R2] from Main

Stack
[R3] from Main frame
> for
FP —= [FP] from Main first
subroutine
2020
parami
param?2
-«——Old TOS

Figure 3.13 ARM stack frames for Figure 3.12.

The last instruction in each subroutine restores the old value of the frame pointer as
well as the values of the other registers used, and pops the return address from the stack
into the PC.

3.7 PROGRAM EXAMPLES

In this section, we give ARM versions of the programs for dot product, byte sorting.
and linked-list operations that were described in Chapter 2. The programs are patterned
after the generic programs shown in Figures 2.33. 2.34,2.37, and 2.38. We will describe
only those aspects of the ARM code that differ from the generic versions used in
Chapter 2.

3.7.1 VECTOR DOT PRODUCT PROGRAM
The first two instructions in Figure 3.14 load the addresses of the A and B vectors into

registers R1 and R2. They are the ADR pseudo-instructions described in Section 3.4.1. If
AVEC and BVEC are close enough to the program. an Add instruction using the current

3.7 PROGRAM EXAMPLES

ADR R1L.AVEC R1 points to vector A.
ADR R2.BVEC R2 points to vector B.
LDR R3.N R3 is the loop counter.
MOV RO#0 RO accumulates the dot product.

LOOP LDR R4.RI1].#4 Load A component.
LDR Rb5.JR2).#4 Load B compouent.
MLA RO.R4.R5.RO Multiply components and
accumulate into RO.
SUBS R3.R3.#1 Decrement the counter.
BNE LOOP Branch back if not done.

STR RO.DOTPROD Store dot product.

Figure 3.14 An ARM dotproduct program.

value of the PC can be used to generate the addresses. The Relative addressing mode is
used to access the contents of N and DOTPROD, and the Post-indexed addressing mode
with writeback is used in the first two instructions of the loop. The Multiply-Accumulate
instruction (MLA) performs the necessary arithmetic operations. It multiplies the vector
elements in R4 and RS and accumulates their product into R0.

3.7.2 BYTE-SORTING PROGRAM

Figure 3.15 shows the byte-sorting program. It follows the same structure as used in the
program in Figure 2.34h. The address LIST of the first byte is loaded into register R4. It
is used in the second to the last Compare instruction to determine when the inner loop
(based on the k index) terminates. Correspondingly. RS contains the address LIST + 1
and is used in the last Compare instruction to determine when the outer loop (based on
the j index) terminates. The base register R2 is used to step the j index backward from
the end of the list in the outer loop. Register R3 steps the k index backward through
each sublist in the inner loop. The Pre-indexed addressing mode with writeback is used
to load LIST(/) bytes into register RO and to load LIST(k) bytes into R1I in the outer
and inner loops. respectively.

The conditional execution feature of the ARM instruction setis used to advantage in
the inner loop when LIST(4) must be interchanged with LIST(j). The three-instruction
sequence STR. STR. MOV is only executed if LIST(k) is greater than LIST()), as
indicated by the GT suffixes. The forward conditional branch to NEXT in the generic
program in Figure 2.34b is not needed in the ARM program.

3.7.3 LINKED-LIST INSERTION AND DELETION SUBROUTINES
The insertion and deletion subroutine programs in Figures 3.16 and 3.17 mirror the

structure of the corresponding programs in Figures 2.37 and 2.38 quite closely. The
forward conditional branches used in the generic programs are not needed in the ARM

127

128

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

for (j=n-1:j>0j=j-1)
{for (k=j-1l:k>=0:k=k -1)
{if (LIST[A] > LIST[j])
{ TEMNP = LISTIA]:
LIST[k] = LIST[j]:
LIST[j] = TENP:
}

(a) C-language program for sorting

ADR RL.LIST Load list pointer register R,

LDR R10.N and initialize outer loop base

ADD R2.R4.R10 register R2 to LIST 4 n.

ADD R5.R4.#1 Load LIST + 1 into R5.
OUTER LDRB RO.R2.#-1]! Load LIST(j) into R0.

AOV R3.R2 [nitialize inner loop base register

R3 to LIST +»n — 1.
INNER LDRB R1.[R3.#~1]! Load LIST(k) into R1.

CNDP R1.R0 Compare LIST(A) to LIST(}).
STRGTB RI1.[R2] If LIST (k) > LIST(}). interchange
STRGTD RO.[R3] LIST (&) and LIST(j). and
MOVGT ROR1 move (new) LIST()) into RO
CMNP R3.R1 If £ > 0. repeat

BNE INNER inner loop.

CAIP R2.R5 It j > 1. repeat

BNE OUTER outer loop.

(b) ARM program implementation

Figure 3.15 An ARM byte-sorting program.

programs. This is a result of the use of conditional execution of instruction blocks.
as done in the byte-sorting program in Figure 3.15. Parameters are passed through
registers in both ARM subroutines.

Register mnemonics are used to reflect register usage, instead of the usual R/
notation. The assembler directive RN can be used to define the equivalences. As in the
programs in Figures 2.37 and 2.38, RHEAD contains the address of the first record in

3.7 PROGRAM EXAMPLES

Subroutine
INSERTION CNIDP
MOVEQ
MOVEQ
LDR
LDR
(AP
STRGT
MOVGT
NMOVGT
ANOV
LDR
NP
STREQ
MOVEQ
LDR
MNP
MOVLT
BLT
STR
STR
MOV

LOODP

RHEAD.#0
RHEAD.RNEWREC
PC.RI4

RO.[RHEAD]
R1RNEWREC]

RO.R1

RHEAD . [RNEWREC #1]
RHEAD RNEWREC

PC R11
RCURRENT.RHEAD
RNEXT.[RCURRENT.#4]
RNEXT.#0

RNEWREC [RCURRENT. #4]
PC.R14

RO.[RNEXT]

RO.R1
RCURRENT.RNEXT
LOOD
RNEXT.[RNEWREC #4]
RNEWREC.[RCURRENT . #4]
PC.RI1

Check if list cmpty.

If ciapty. insert new
record as head.

If not cmptyv. check if
new record becomes
new head. and
insert if ves.

If new record goes after
O
current head.
find where.

New record becomes new tail.

Go further?
Yes. then loop back.
Otherwise. jusert new record

between current and
next records.

Figure 3.16 An ARM subroutine for inserting a new record into a linked list.

Subroutine
DELETION LDR
AP
LDREQ
MOVEQ
AOV
LDR
LLDR
NP
LDREQ
STREQ
NMOVEQ
AOV

B

L.OOP

RO.[RHEAD]
RO.RIDNTUM
RHEAD.[RHEAD. #4]
PC.R14
RCURRENT.RHEAD
RNEXT.[RCURRENT.#4]
RO.RNEXT]
RO.RIDNT A
RORNEXT #4]
RO.RCURRENT #4]
PC.R1
RCURRENT.RNEXT
LOOP

Check if record to be
deleted is the head.
If ves. delete
and return.
Otherwise. contimie search.
Is next record the oue
to be deleted?

If ves. delete
and return.

Otherwise. loop back
to contimie scarch.

Figure 3.17 An ARM subroutine for deleting a record from a linked list.

129

130

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

the list. RNEWREC contains the address of the new record to be inserted. RIDNUM
contains the ID number of the record to be deleted. The two registers RCURRENT and
RNEXT contain link addresses that are used by the subroutines to walk through the list
to find the insertion or deletion positions.

The insertion subroutine in Figure 3.16, patterned after the subroutine in Fig-
ure 2.37, has the following structure. The first three instructions insert the new record
as the head (and tail) of a previously empty list. Recall that the new record is assumed
to initially have zero in its link field. The third instruction in this block performs the
return operation from the subroutine to the calling program. The next six instructions
determine whether or not the new record should become the new head of the existing
list. The list is ordered by increasing ID numbers. Therefore. if the ID number in the first
word of the current head record is greater than the ID number of the new record. then
the new record becomes the new head of the list. The conditionally executed STRGT
and MOVGT instructions perform the appropriate link address operations if this is the
case. Otherwise, the remaining part of the subroutine determines where the new record
should be inserted in the list after the current head, including the possibility that the
new record becomes the tail.

The deletion subroutine is shown in Figure 3.17. If the record to be deleted is the
head of the list, the first four instructions discover this. delete it and return. Otherwise.
the remainder of the subroutine uses registers RCURRENT and RNEXT to move
through the list looking for the record. The LDREQ/STREQ pair of instructions delete
the record when it is found to be the one pointed to by RNEXT.

As with the generic programs in Figures 2.37 and 2.38. the insertion subroutine in
Figure 3.16 assumes that the ID number of the new record does not match that of any
record already in the list. and the deletion subroutine in Figure 3.17 assumes that there
exists a record in the list with an ID number that does match the contents of RIDNUM.
Problems 3.23 and 3.24 consider how the subroutines should be changed to signal an
error if the assumptions are not true.

PART 11

THE 68000 EXAMPLE

In this second part of Chapter 3. we describe the basic architecture of processors
in Motorola’s 680X0 family by discussing the 68000 ISA. The family includes sev-
eral processors that provide different performance levels. All members of the fam-
ily have the same basic architecture. but later members have additional features that
enhance their performance. We use the 68000 here because it is somewhat simpler
to describe, yet it portrays the salient features of the entire family. We do not pro-
vide a comprehensive description of the 68000. For such information. the reader can
consult manufacturer’s information [6]. Instead, we concentrate on the most impor-
tant aspects of the 68000. giving sufficient detail to enable the reader to prepare. as-
semble, and run simple programs. The distinguishing features of various members
of the 680X0 family, as well as some of the features introduced for performance
enhancement. are described in Chapter 11. The programs from Chapter 2 are pre-
sented here in the 68000 assembly language to illustrate various aspects of the 68000
architecture.

3.8 REGISTERS AND ADDRESSING

3.8 REGISTERS AND ADDRESSING

The 68000 processor is characterized by a 16-bit external word length because the
processor chip has 16 data pins for connection to the memory. However, data are
manipulated inside the processor in registers that contain 32 bits. The more advanced
models of this family are the 68020. 68030. and 68040 processors. which come in
larger chip packages and have 32 external data pins. Thus. they can deal with data both
internally and externally in 32-bit quantities. Tabak [7] covers these members of the
680X0 family, emphasizing the 68040.

3.8.1 THE 68000 REGISTER STRUCTURE

The 68000 register structure, shown in Figure 3.18, has 8 data registers and 8 address
registers, each 32 bits long. The data registers serve as general-purpose accumulators
and as counters.

The 68000 instructions deal with operands of three different lengths. A 32-bit
operand is said to occupy a long word, a 16-bit operand constitutes a word. and an 8-bit
operand is a byte. When an instruction uses a byte or a word operand in a register,
the operand is in the low-order bit positions of the register. In most cases, such instruc-
tions do not affect the remaining high-order bits of the register, but some instructions
extend the sign of a shorter operand into the high-order bits.

The address registers hold information used in determining the addresses of mem-
ory operands. This information may be given in either long word or word sizes. When
the address of a given memory location is in an address register, the register serves
as a pointer to that location. Both address and data registers can also be used as index
registers. One address register. A7, has the special function of being the processor stack
pointer. The role of this register is discussed in Section 3.13.

The address registers and address calculations involve 32 bits. However, in the
68000. only the least-significant 24 bits of an address are used externally to access the
memory. The 68020, 68030. and 68040 processors have 32 external address lines as
well as 32 data lines.

The last register shown in Figure 3.18 is the processor status register; SR. It contains
five condition code bits, which are described in Section 3.11.1: three interrupt bits,
which are discussed in Chapter 4: and two mode-select bits. which are explained in
Section 3.13.

3.8.2 ADDRESSING

The memory of a 68000 computer is organized in 16-bit words and is byte address-
able. Two consecutive words can be interpreted as a single 32-bit long word. Memory
addresses are assigned as shown in Figure 3.19. A word must be aligned on an even
boundary. that is, its address must be an even number. The big-endian address assign-
ment is used. The byte in the high-order position of a word has the same address as the
word, whereas the byte in the low-order position has the next higher address.

131

132 CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

je————— Long word ————

Word |
= Byte —=|
31 16 15 8 7 0
DO | |
DI | |
D2 | |
> l | Dalu
D4| [; registers
Ds [
D6 | |
|

| |
| |
| |
| |
| |
| |
| |
7 | | |
| |
| |
| |
| |
| |
| |
| |

A0 |
Al |
A2 |
Address
A3 [registers
A |
As |
A6 |
A7 User stack pointer Stack
Supervisor stack pointer pointers
PC | ! | Program counter
1513 108 4 0
SR ‘] | l I | | | | | | I Status register
T - Trace mode select ——J | I C — Carry
S — Supervisor mode select V - Overflow
I — Interrupt mask ————— Z — Zero
N — Negative
X - Extend

Figure 3.18 The 68000 register structure.

Word
addresses

(8%

i+2

3.8 REGISTERS AND ADDRESSING

Long word 0

Long word ¢

Contents
byte 0 byte 1
byte 2 byte 3
byte i byte i+1
byte i+2 byte i+3
24 24
byte 27 -2 byte 27 —1

Figure 3.19 Map of addressable locations in the 68000.

Since the 68000 generates 24-bit addresses. its addressable space is 27 (16,777.216

or 16M) bytes. This addressable space may be thought of as consisting of 512 (2°) pages
of 32K (2'%) bytes each. Thus, hexadecimal addresses 0 to 7FFF constitute page 0.
addresses 8000 to FFFF make up page 2. and so on. The last page consists of addresses
FF8000 to FFFFFF.

The 68000 has several addressing modes. including those discussed in Section 2.5.

Many of the 68000’s instructions fit into a 16-bit word. but some require additional
words for extra addressing information. The first word of an instruction is the OP-
code word, which specifies the operation to be performed and gives some addressing
information. The rest of the addressing information. if any. is given in subsequent words.
The available addressing modes are defined as follows:

Immediate mode — The operand is contained in the instruction. Four sizes of
operands can be specified. Byte. word. and long-word operands are given fol-
lowing the OP-code word. The fourth size consists of very small numbers that
can be included directly in the OP-code word of some instructions.

Absolute mode — The absolute address of an operand is given in the instruction,
following the OP code. There are two versions of this mode — long and short.
In the long mode. a 24-bit address is specified explicitly. In the short mode. a
16-bit value is given in the instruction to be used as the low-order 16 bits of an
address. The sign bit of this value is extended to provide the high-order eight
bits of the address. Since the sign bit is either O or 1. it follows that in the short

133

134

CHAPTER 3 « ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

mode only two pages of the addressable space can be accessed. These are the 0
page and the FF8 page, each containing 32K bytes.

Register mode — The operand is in a processor register specified in the instruction.

Register indirect mode — The effective address of the operand is in an address
register specified in the instruction.

Autoincrement mode — The effective address of the operand is in an address regis-
ter, An, specified in the instruction. After the operand is accessed, the contents
of An are incremented by 1, 2, or 4, depending on whether a byte, a word, or a
long-word operand, respectively, is involved.

Autodecrement mode — The contents of an address register, An, specified in the
instruction are decremented by 1, 2, or 4, depending on whether a byte, a word,
or a long-word operand, respectively, is involved. The effective address of the
operand is the decremented contents of An.

Basic index mode — A 16-bit signed offset and an address register, An, are spec-
ified in the instruction. The sum of this offset and the contents of An is the
effective address of the operand.

Full index mode — An 8-bit signed offset, an address register An, and an index
register Rk (either an address or a data register) are given in the instruction.
The effective address of the operand is the sum of the offset and the contents of
registers An and Rk. Either all 32 bits or the sign-extended low-order 16 bits of
Rk are used in the derivation of the address.

Basic relative mode — This is the same mode as the basic index mode except that
the program counter is used instead of an address register, An.

Full relative mode — This is the same mode as the full index mode except that the
program counter is used instead of an address register, An.

The addressing modes and their assembler syntax are summarized in Table 3.2.

Note that there are two versions of the index mode. The basic index mode corre-
sponds to the mode depicted in Figure 2.13. The full index mode involves the contents
of two registers and an offset constant given in the instruction. The size of the offset
constant is 16 bits in the basic mode and 8 bits in the full mode.

In the full index mode, the second register, Rk, can be used in two ways: either
all 32 bits are used or only the low-order 16 bits are used. The two possibilities are
indicated to the assembler by appending a size indicator — L for a long word or W
for a word — to the name of the register, for example, D1.L or D1.W. The latter is the
default size if no indicator is given. When a 16-bit word is used in the computation of
a 32-bit effective address, this word is sign extended.

In either of the two index modes, the program counter may be used in place of the
address register. The resulting addressing modes are called the relative modes because
the effective address is specified in terms of the distance between the operand and the
instruction that refers to it. Consider the instruction

ADD 100(PC,A1).DO

Table 3.2 68000 addressing modes

3.8 REGISTERS AND ADDRESSING 135

Name Assembler syntax Addressing function
Immediate #Value Operand = Value
Absolute Short Value EA = Sign Extended W Value
Absolute Long Value EA = Value
Register Rn EA =R,

that is, Operand = {R,]
Register Indirect (An) EA=1(A,]
Autoincrement (An)+ EA=[A,]

Increment A,,
Autodecrement —(An) Decrement A2

Indexed basic WValue(An)

[ndexed full BValue(An,Rk.S)
Relative basic WValue(PC)
or Label

Relative full BValue(PC,Rk.S)

or Label (Rk)

EA =[A,]
EA = WValue + [A,]
EA = BValue + [A,] +[R¢]
EA = WValue + [PC]

EA = BValue + [PC] + [R¢]

EA = effective address

Value = a number given either explicitly or represented by a label
BValue = an 8-bit Value

WValue = a 16-bit Value

A, = an address register

R, = an address or a data register

S = a size indicator: W for sign-extended 16-bit word

and L for 32-bit long word

When encoded in machine form. this instruction consists of two words. The OP-code
word specifies that this is an Add instruction. that the destination register is data register
DO, and that the full relative addressing mode is used for the source operand. The
second word, also called the extension word, specifies that register Al is used as the
index register and it contains the offset value 100 encoded in 8 bits.

Assume that the preceding instruction is stored in location 1000 and that register Al
contains the value 6, as shown in Figure 3.20. When the OP-code word of this instruction
has been fetched and while it is being decoded by the processor, the program counter
points to the extension word, which means that the program counter contains the value
1002. Therefore, the effective address of the source operand is

EA = [PC] +[A1] + 100
= 1002 46+ 100

= 1108

136

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

1000 OP-code word 6 Al

1002 Extension word i

00 = oftset

1102 e
1104
6 = index
1106 i > Array
1108 Operand —_—

Figure 3.20 An example of 68000 full relative mode for the instruction
ADD 100(PC,A1),DO.

Figure 3.20 suggests how this addressing mode can be used to access an entry in an
array. The offset value specifies the distance between the first entry in the array and
the instruction. Then the index register gives the distance between that point and the
desired operand. which is the fourth word in the array.

We have written the relative mode in an explicit format. Most assemblers allow
this mode to be specified in a simpler way. First. the assembler must be informed that
relative addressing is to be used in a given section of the program through an appropriate
assembler directive. Next, after the name ARRAY has been assigned the value 1102,
the instruction in Figure 3.20 can be written as

ADD ARRAY(A1).DO

The assembler interprets this specification of the source operand as being in the full
relative mode, and it computes the offset as indicated in the figure. The assembler does
not know, and does not need to know. what the contents of register Al will be when the
instruction is executed. For example, this instruction may be inside a program loop. in
which case Al could be used to access successive elements of the array.

The full relative mode is limited by the fact that the offset is a 2’s-complement
8-bit number, thus restricting its values to the range — 128 to +127 bytes.

3.9 INSTRUCTIONS

The 68000 ISA provides an extensive set of instructions. most of which can operate
on any of the three possible sizes of operands. The instruction set is summarized in
Appendix C. All addressing modes can be used in a uniform way with most instructions.
Instruction sets that exhibit this feature are said to be orthogonal.

3.9 INSTRUCTIONS

15 1211 98765 0
11017 dst |0 S1I¢

- |7

size
—_—
OP code

(a) Format of the OP-code word for an ADD instruction

Binary 11010110011 11100

| SN D SN S SN) S

Hex D 6 7 C

(b} Encoding of the OP-code word

i D67C OP-code word
i+2 9 Immediate operand
i+4
D3 25 D3 34
pC i PC i+4
Before After
instruction fetch instruction execution

(c) Consequences of the execution

Figure 3.21 The 68000 instruction ADD #9,D3.

The 68000 has both one-operand and two-operand instructions. A two-operand
instruction is written as

OP sre.dst

where the operation OP is performed using the source and destination operands. The
result is placed in the destination location. An example is given in Figure 3.21, which

137

138

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

shows the instruction
ADD #9,D3
This instruction performs the action
dst < [src] + [dst]

which results in adding the value 9 to the contents of register D3 and storing the result
back in D3.

Figure 3.21a depicts the general format of the ADD instruction. Either the source
operand or the destination operand must be in a data register, Dn. The second operand
may be in a register or a memory location. The allowable combinations are given in
Table C.4. Since at least one of the two operands is always in one of the eight data
registers, a 3-bit field suffices to identity it. The other operand is specified according
to Table C.1. In our example, the destination register D3 is represented by the binary
pattern O11 in bits 9 through 11, and the immediate source operand is identified with
the pattern 111100 in bits O through 5.

The desired operand size is indicated in the 2-bit size field. In our example, the size
of the operands is not stated explicitly in the assembly language statement, in which
case the assembler assumes the default value of a 16-bit word. According to Table C.3.
word-size operands are denoted by the pattern O1.

From the discussion above, it follows that the OP-code word for our ADD instruc-
tionis 1101011001111100, which is represented by the hex number D67C, as indicated
in Figure 3.215b.

The immediate source operand, 9, is given in the word following the OP-code
word, as shown in Figure 3.21¢. Before fetching the instruction, the program counter
points to the OP-code word at address i. As each word is fetched from the memory.
the contents of the PC are incremented by 2. Thus, when execution of the instruction
is completed, the PC points to the OP-code word of the next instruction at address
i+ 4.

A similar instruction using the same format is the Subtract instruction, SUB, which
performs the operation

dst «- [dst] — [src]

As Table C.4 shows, the ADD and SUB instructions allow considerable flexibility in
specifying one of the two operands. However. the second operand must be in a data
register. Most other two-operand instructions have the same type of restriction. The only
instruction in which both the source and the destination operands may be specified in
terms of most of the addressing modes is the Move instruction, MOVE, which performs
the action

dst < [src]

3.9 INSTRUCTIONS

Let us now consider a simple routine for the task C < [A] + [B]. shown in
Figure 2.8. The required task can be performed as follows

MOVE A.DO
ADD B.DO
MOVE DO0.C

These instructions may be stored in the memory of a 68000 computer, as shown in
Figure 3.22. The figure shows hexadecimal values for the addresses and operands. The
operands are assumed to be 16 bits long. and their addresses are specified in the absolute
mode. Note that the long version of the absolute mode is needed because the desired
addresses cannot be represented in 16 bits. The high-order 16 bits of a 32-bit address
are placed in the lower address word and the low-order 16 bits in the higher address
word. according to the convention shown in Figure 3.19.

A=201150 639,,

B =201152 -215,,
201200 OP-code word
201202 20 > MOVE A.DO
201204 1150
201206 OP-code word
201208 20 ADD B.DO
20120A 1152
20120C OP-code word
20120E 20 > MOVE DO0.C
201210 2200

C =202200

After execution. {202200] = 424,

Figure 3.22 A 68000 routine for C « [A] + [B].

139

140

CHAPTER 3 -+ ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

3.10 ASSEMBLY LANGUAGE

The discussion of assembly languages in Section 2.6 applies generally to the 68000
assembly language. Some minor differences and additions are explained here.

Because 68000 instructions can deal with three different sizes of operands. the
assembler instructions must indicate the desired size. This is done by appending the
size indicator to the operation mnemonic. The size indicator is L for long word, W for
word, and B for byte. Thus, if an Add instruction is to operate on long-word operands.
its operation mnemonic is written as ADD.L. When no size indication is given. the
operand size is taken to be one word. This means that the instructions ADD.W #20.D|
and ADD #20,D1 are identical.

Numbers in a source program are assumed to be in decimal representation unless
marked with the prefix $ for hexadecimal or % for binary. Alphanumeric characters
placed between single quotes are replaced by the assembler with their ASCII codes.
Several characters may be specified in a string between quotes. For example, a valid
character string is ‘STRING3".

All of the assembler directives discussed in Section 2.6 can be used with only slight
differences in notation. The starting address of a block of instructions or data is specified
with the ORG directives. The EQU directives equates names with numerical values.
Data constants are inserted into an object program using the DC (Define Constant)
directives. The size indicator is appended to specify the size of the data items, and
several items may be defined in one directives. For example, the directives

ORG 100
PLACE DC.B 23.$4F.%10110101

Mewmory Addressing
address or data
label Operation information
Assembler direetives C EQU $202200
ORG $201150
A DC.W 639
B DC.W —215
ORG $201200
Statements that NMOVE A.DO
generate machine ADD B.D0O
mstrictions MOVE DoO.C
Assembler directive END

Figure 3.23 68000 assembly language representation for the
routine in Figure 3.22.

3.11 PROGRAM FLOW CONTROL

result in hex values 17 (23,,). 4F. and B5 being loaded into memory locations 100, 101,
and 102, respectively. The label PLACE is assigned the value 100.

A block of memory can be reserved for data by means of the DS (Define Storage)
directive. For instance, the directive

ARRAY DS.L 200

reserves 200 long words and associates the name ARRAY with the address of the first
long word.

A simple example of a 68000 assembly language program that corresponds to
Figure 3.22 is given in Figure 3.23.

3.11 PROGRAM FLOW CONTROL

Branch instructions are needed to implement program structures such as if statements
and loops. In general. a branch instruction tests a branch condition and then. depend-
ing on the result, causes execution to proceed along one of two possible paths. The
conditions tested relate to the result of a recently performed operation.

3.11.1 CoONDITION CODE FLAGS

The 68000 has five condition code flags. stored in the status register shown in Fig-
ure 3.18. In addition to the N. Z. V. and C flags described in Section 2.4.6. the 68000
has a fifth flag, X (extend). It is set in the same way as the C flag, but it is not affected
by as many instructions. This apparent duplication is convenient when dealing with
multiple-precision operations, which we will discuss in Chapter 6.

Table C.4 in Appendix C shows which flags are affecied by each instruction. The C
and X flags are set to 1 if a carry occurs from the most-significant bit position as a result
of performing an add operation. The C and X flags are set to I if no carry occurs as a
result of performing a subtract operation. signifying a borrow signal. Since operands
can be specified in any of three possible lengths, these two flags depend on the carry-out
from bit positions 7. 15, and 31. for byte. word. and long-word operands. respectively.
The MOVE instruction sets the N and Z flags according to the operand moved and
clears the C and V flags. MOVE does not affect the X flag unless the destination
specified is the status register itself.

3.11.2 BRANCH INSTRUCTIONS

A conditional branch instruction causes program execution to continue with the in-
struction at the branch target address if the branch condition is met. This address is
determined from the branch offset in the operand field. Otherwise. if the branch con-
dition is not met. the instruction that immediately follows the branch instruction is
executed. The 68000 provides branch instructions with two types of offset. In the first
type. a short offset of 8 bits is included in the OP-code word. These instructions can be

141

142

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

used when the branch target is within +127 or — 128 bytes of the value in the program
counter at the time the branch address is computed. Recall that the PC contents are
incremented as each word is fetched tfrom the memory. which means that the offset
defines the distance from the word that follows the branch instruction OP-code word.
In the second type. a 16-bit offset is specified in the word that follows the OP-code
word. This provides for a much greater range (+32K) within which the branch target
can be located. In this case, the offset is the distance from the extension word to the
branch target.

Figure 3.24 illustrates the use of a short-offset branch instruction. It shows how
the program loop m Figure 2.16 can be implemented using a 68000 processor. Note
that the program in Figure 2.16 uses a Decrement instruction. Since the 63000 does not
have such an instruction, we have used the Subtract Quick instruction. SUBQ. which
subtracts the immediate operand | from the contents of register D1. A 3-bit immediate
operand is included within the OP-code word of the SUBQ instruction: thus. only one
word is needed to represent the instruction.

The 68000 has 16 conditional branch instructions. each with 8- and 16-bit offsets.
Itatso has an unconditional branch instruction. BRA. where the branch is always taken.
Tables C.5 and C.6 give the details of these instructions.

IN] S 7 0

OP code Oftset

Branch address = [updated PCJ + oftset

(a) Short-offset branch instruction format

LOOP 1000 OP-code word -<— LOOP ADDW (A2)+.D0
1002 OP-code word -——— SUBQ.W #1.D]
1004 OP code -6 - BGT LOOP
1006
v v
Appearance of loop in memory Assembly language

version of loop

[PC] = 1006 when branch address is computed
Branch address = 1006 - 6 = 1000

(b) Example of using a branch instruction in the loop of Figure 2.16

Figure 3.24 68000 short-offset branch instructions.

3.11 PROGRAM FLOW CONTROL

AMOVEL N.D1 N contains o, the munber of entries
to be added. and D1 is nsed as
a counter that determines how
maty tines to execute the foop.
MOVEAL #NUMIA2 0 A2 s nsed as o pointer 1o the list entries.
1t is initialized to NUNIL the address
of the first entry.

CLR.L Do DO is sed to accunulate the suni.
LOOP ADDAW (A2)+.DO Successive numbers are added in DO,

SUBQ.L #1.D1 Decrement the counter.

BGT LOOP If fD1] # 0. execute the loop again.

MOVEL DO.SUNI Store the s i SUNL

Figure 3.25 A 68000 program for the addition program in Figure 2.16.

Figure 3.25 shows a 68000 program for the program in Figure 2.16. It uses data
registers DO and D1 to accumulate the sum and to act as a counter, respectively. and
uses address register A2 to point to the operands as they are fetched from the memory.
Note that an address register is used because. in the Autoincrement addressing mode.
only address registers are allowed.

Decrement and Branch Instructions

In addition to the normal branch instructions, the 68000 has a set of more complex
branch instructions that incorporate a counting mechanism. Such a facility is usetul for
implementing loop control. These instructions are written in the format

DBce Dn.LABEL

where the suffix cc denotes a branch condition. For example. if GT is used in place of
cc. the resultant instruction, DBGT, is the Decrement and Branch unless Greater Than
instruction. The full set of possible branch conditions is given in Table C.6. The way
the branch condition is used in these instructions is opposite to the way it is used in
other branch instructions. The action is as follows:

« 1f the condition specified by cc is satisfied. then the instruction that immediately
follows the DBcc instruction is executed next.

« If the condition specified by cc is not satisfied. then the least-significant 16 bits of
register Dn are decremented by 1. 1f the result is equal to — 1. the instruction that
follows the DBcce instruction is executed next. If the result is not equal to —1. a
branch is made to the instruction at location LABEL.

The DBcc instructions are more powerful than normal branch instructions because the
decision on whether the branch is to be taken depends on two conditions rather than
one. If the same action were specified using normal branch instructions. it would be

143

144

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

necessary to use a sequence of three instructions: first, a branch instruction that tests the
cc condition: next., an instruction that decrements the contents of the counter register:
and finally. another branch instruction that causes a branch based on the result of the
decrement operation. For example. the instructions

DBce D3.LOOP

next instruction

are equivalent to the sequence

Bee NEXT
SUBQ #1.D3
BGE LOOP

NEXT next instruction

A useful way of thinking about the DBcc instructions is to view them as providing
convenient means for loop control where early exit from the loop occurs when a given
condition is met. The number of times that the loop can be executed is limited by the
contents of the counter register. which is D3 in the preceding example.

One DBcc instruction. DBF (Decrement and Branch if False). uses a test condition
thatis always false. Thus. the decision on whether a branch is to be made is based solely
on the result of decrementing the counter register. This instruction is useful when a loop
is always executed a predetermined number of times. It is even given a second name.
DBRA (Decrement and Branch Always).

To demonstrate the usefulness of decrement and branch instructions, the program
of Figure 3.25 can be rewritten using the DBRA instruction. as shown in Figure 3.26.
Register D1 is initialized to the value 1 in Figure 3.25. However. because the DBRA
instruction causes a branch when the counter register contains a value equal to or greater
than zero. register D1 is initialized to the value n — 1 in Figure 3.26. The total number
of instructions in the two programs is the same. but the program in Figure 3.26 takes
less time to execute because of the shorter loop.

AMOVE.L N.D1 Put n -- 1 into the
SUBQ.L #1.D1 counter register DI,
MOVEAL #NUNMLA2
CLR.L DO

LOOP ADD.W (A2)-.D0
DBRA D1.LOODP Loop back wntil [D1]= —1.

MOVEL DO.SUN

Figure 3.26 An alternative 68000 program for the program in Figure 3.25.

3.12 /O OPERATIONS
3.12 1/O OPERATIONS

The 68000 processor requires that all status and data buffers in the intertaces of I/O
devices be addressable as if they were memory locations. This means that program-
controlled /O in a 68000 computer can be achieved as described in the general discus-
sion in Section 2.7.

Assume that bit 53 of the keyboard status register INSTATUS contains the in-
put control flag SIN. An input operation from the keyboard is accomplished with the
instruction sequence

READWAIT BTST.W #3.INSTATUS
BEQ READWAIT
MOVE.B DATAIN.DI

The bit test instruction. BTST. tests the state of one bit of the destination operand and
sets condition code flag Z to be the complement of the bit tested. The position of the
bit to be tested. by in our example. is specified by the first operand.

Assuming that bit by in the display status register OUTSTATUS contains the output
control flag SOUT. the character in register D1 can be sent to the display by the
instruction sequence

WRITEWAIT BTST.W #3.OUTSTATUS
BEQ WRITEWAIT
MOVE.B DI.DATAOUT

A 68000 program that reads one line of characters from a keyboard. stores them
in the memory, and echoes them back to the display is shown in Figure 3.27. This

MOVEAL #LOCAL Initialize pointer register Al to contain the
address of the first location in memory
where the chiaracters are to he stored.

READ DBTST. W #3. INSTATUS Wait for a character to be eutered

BEQ READ in the kevboard buffer DATAIN.
MOVE.D DATAIN. (A1) Transfer the character fromn DATAIN into
the memory (this clears SIN to 0).
ECHO BTSTAW #3.OUTSTATUS Wit for the display to become ready.

BEQ ECHO

MOVE.D (A1).DATAOUT Nove the character just read to the output
buffer register (this clears SOUT to 0).

CNPLB #CR.(AL)+ Check if the chiaracter just read is CR
(carriage return). If it is not CR. then
BNE READ Dranch back and read another character.

Also. increment the pointer to store the

next character.,

Figure 3.27 A 68000 program that reads a line of characters and displays it.

145

146

CHAPTER 3 -+ ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

program is patterned after the program in Figure 2.20. It assumes that a line ends when
the return key is pressed. The characters are stored in memory byte locations starting
with location LOC.

3.13 STACKS AND SUBROUTINES

A stack can be implemented. as explained in Section 2.8. using any of the address reg-
isters as a pointer. The Autoincrement and Autodecrement addressing modes facilitate
this process. One specitic register. register A7. is designated as the processor stack
pointer. and the stack this register points to is called the processor stack. This is the
stack used in all stack operations that the processor performs automatically. as in the
case of subroutine linkage.

Figure 3.18 shows two different 32-bit registers called A7. The 68000 provides for
two different modes of operation. called the user and supervisor modes. Each mode
has its own version of the processor stack pointer. A7. In the supervisor mode, the
processor can execute all machine instructions. In the user mode. some instructions.
called privileged instructions. cannot be executed. Application programs are normally
run in the user mode. and the system software uses the supervisor mode. Bit S in the
processor status register determines which of the two modes is active, and. hence. which
of the two A7 registers is used.

A Branch-to-Subroutine (BSR) instruction is used to call a subroutine. It is imple-
mented in the same way as any other branch instruction. but it also causes the contents
of the program counter to be pushed onto the stack. Its branch target is the first instruc-
tion in the subroutine. When the subroutine is completed. a Return-from-Subroutine
(RTS) instruction is used to return to the calling program. It pops the return address
at the top of the stack into the program counter. The BSR and RTS instructions allow
the subroutine linkage mechanism. described in general terms in Section 2.9, to be
implemented.

Figure 3.28 shows how the program in Figure 3.26 can be written as a subroutine.
passing parameters through registers. The list address and the number of entries in
the list are passed to the subroutine using registers A2 and DI, After performing the
addition. the subroutine returns the sum in register DO.

Figure 3.29 shows how the program in Figure 3.26 can be written as a subrou-
tine, passing parameters on the processor stack pointed to by address register A7. The
MOVEM (Move multiple registers) instructions save and restore registers A2, D1, and
DO. The order in which these registers are stored on the stack is shown in Figure 3.2954.
The tirst MOVEM instruction. which uses the Autodecrement addressing mode. pushes
the specified registers onto the stack. The second MOVEM instruction uses the Autoin-
crement addressing mode to pop the stored values off the stack and store them into the
registers in the reverse order.

Consider now the case of nested subroutines. in which one subroutine calls another.
as shown in Figure 2.28. Figure 3.30 gives the 68000 code for this example, and the
stack frames for subroutines SUBI and SUB2 are shown in Figure 3.31. The main
program calls subroutine SUBI. Before the call instruction BSR is executed. the main
program pushes parameters param?2 and param| onto the stack for use by SUBI.

3.13 STACKS AND SUBROUTINES 147

Calling program

MOVEAL #ANUMLEA2 Pt the address NUML in A2,

ANOVEL N.Dl Put the nunber of entries » in D1
BSRR LISTADD Call subroutine LISTADD.
ANOVEL DO.SUNL Store the swun i SUNL

next instruction

Subroutine

LISTADD SUBQ.L #1.D1 Adjnst connt to n - 1.
('LR.L DO

LOOP ADDAV (A2)+.Du Accumulate st in DO.
DBRA D1.1.OOP
RTS

Figure 3.28 Program of Figure 3.26 written as o 68000 subroutine; parameters passed
through registers.

The subroutine begins by creating its own frame on the stack. The special
instruction:

LINK Ai#disp
sets up register A7 as the frame pointer by performing the following operations:

1. It pushes the contents of register Ai onto the processor stack.

9]

. It copies the contents of the processor stack pointer. A7. into register Al

3. It adds the specified displacement value to register AT.

If the displacement value is a negative number. it will cause the top of the stack to
move upward (to a lower address location). thus creating an empty space on the stack
which the subroutine can use for local variables. These variables can be accessed using
indexed addressing with the frame pointer register Ai. At the end of the subroutine.
the UNLK (Unlink) instruction reverses the actions of the LINK instruction. It loads
A7 from Ai. thus lowering the top of the stack to its position before adding the dis-
placement value. Then it pops the original contents of register A7 off the stack and back
into Al

In the example in Figure 3.30. we have assumed that the subroutines can perform
their tasks using only registers. so they do not require work space on the stack. Hence.
each subroutine begins with the instruction

LINK A6#0

148

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

(Assume top of stack is at

Calling program

MOVE.L
MOVE.L
BSR
MOVE.L
ADDIL

Subroutine

LISTADD MOVEM.L
MOVE L
SUBO.L
MOVEALL
CLR.L

LOOP ADD.W
DBRA
MOVE.L
MOVEM.L
RTS

level 1T below.)

#NUMI.—(AT)
N.— (A7)
LISTADD
1(AT).SUNI
#8.AT

DO—D1/A2.—(AT)
16(AT).D1

#1.D1

20(AT).A2

DO

(A2)+.D0
D1.LOOD
DO.20(AT)
(AT)+.D0-D1/A2

Push paraneters onto stack.

Save result.
Restore top of stack.

Save registers DO. D1, and A2
Inirialize connter to .

Adjunst count to use DBRA.
Initialize pointer to the list.
Initialize s to 0.

Add entry from list.

Put result on the stack.
Restore registers.

(a) Calling program and subroutine

Level 3

Level 2

Level 1

— Do)
[D1]
A2
= | Return address
n
NUN1

(b) Stack contents at different times

Figure 3.29 Program of Figure 3.26 written as a 68000 subroutine: parameters passed

on the stack.

3.13 STACKS AND SUBROUTINES 149

Memory
location Instructions Conuments

Calling program

2000 ANOVEL PARAMN2.—(

AT) Place parameters on stack.

2006 MOVE.L PARAMIL.—(AT)
2012 BSR SUBIL
2014 AMOVE.L (AT).RESULT Store result.
2020 ADDIL #8.AT Restore stack level.
2024 next instruction
First subroutine
2100 SUBI LINK AG.#0 Set frame pointer.
2104 MOVEM.L DO-D2/A0.—(AT) Save registers.

AMOVEAL %(AG)LAO Load parameters.

MOVE.L 12(A6).DO

ANOVEL PARAMNS.—(AT) Place a parameter on stack.

2160 BSR SUB2

2161 MOVE.L (AT)+.D1 Pop result from SUB2 into D1.
AMOVEL D2 .3(A6) Place result on stack.
MOVENL (AT)+.D0-D2/A0 Restore registers.
UNLK A6 Restore frame poiuter.
RTS Return.

Second subroutine

3000 SUB2 LINK AG.#0 Set frame pointer.
NMOVEML DO=DI1.—(AT) Save registers.
ANOVEL R(AG).DO Load parameter.
NMOVEL DL8(AG) Place yesult on stack.
MOVEML (AT)+.D0-DI Restore registers,
UNLK AG Restore frame pointer.
RTS Return.

Figure 3.30 Nested subroutines in 68000 assembly language.

150 CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

[DO] from SUBI

(D1} from SUBI Stack
frame
A6 —— [A6] from SUBI for
second
2164 subroutine

param3

[DO} from Main

{D1} from Main

{D2} from Main

Stack
[AQ] from Main frame
> fﬂr
A6 —m [A6] trom Main first
subroutine
2014
param|
param?2
~«——QOld TOS

Figure 3.31 68000 stack frames for Figure 3.30.

which defines register A6 as the stack frame pointer and leaves A7 pointing to the
location where the old contents of A6 are stored. This instruction performs the same
operations as the first two Move instructions at the beginning of the subroutines in
Figure 2.28. In each case. it is followed by a MOVEM instruction. which saves the
registers needed by the subroutine on the stack.

The remainder of the program in Figure 3.30 is a straightforward implementation
of the program in Figure 2.28. using 63000 instructions. As the program in Figure 3.30
is executed. the resulting items are placed on the stack as shown in Figure 3.31. The
main program pushes two parameters on the stack, and then the BSR instruction causes
the return address. 2014. to be pushed onto the stack. Note that the BSR instruction
fits in one word at location 2012 because the offset to SUBI is small enough to be
represented in 8 bits. The LINK and MOVEM instructions in SUB| save the contents
of the frame pointer. A6. and four other registers.

Before subroutine SUBI calls SUB2. it pushes one parameter. param3. onto the
stack. The return address. 2164, is pushed onto the stack by the BSR instruction. The
BSR instruction occupies two words because the offset to the target address is larger
than can be represented in 8 bits. When each subroutine completes its task. it restores the
saved register contents and then returns. After control is returned to the main program,

3.14 LOGIC INSTRUCTIONS

the result placed on the stack by SUBI (overwriting paraml) is stored in memory
location RESULT. Then. the stack pointer A7 is returned to its original value. pointing
to the old TOS element in Figure 3.31. by the ADDLL instruction.

3.14 LOGIC INSTRUCTIONS

In previous sections. we described instructions that move operands and perform arith-
metic operations such as addition or subtraction. The operands involved in these in-
structions have a fixed length of 32, 16, or § bits. In some applications it is necessary to
manipulate other sizes of data, perhaps only individual bits, and perform logic opera-
tions on these data. The 68000 has several instructions for such purposes. In particular.
the 683000 has instructions that perform logical AND. OR. and XOR operations as well
as instructions that shift and rotate operands in several ditferent ways.

To illustrate the use of logic instructions. let us consider two examples. Suppose
that register D1 contains some 32-bit binary pattern. and we want to determine if the
pattern in bit positions by through £y is 11001, This can be done using the instructions

AND.L. #$7C000.D1

CMPLL #564000.D1

BEQ YES
The first instruction performs the logical AND of individual bits of the source and
destination operands. leaving the result in register D1. The hex number 7C000 has
ones in bit positions by through b1 and zeros elsewhere. Thus. as a result of the AND
operation. the five bits in positions by through by in register D1 retain their original
values and the remaining bits are cleared to 0. The subsequent Compare instruction
tests whether these five bits correspond to the desired pattern.

Digit-Packing Program

As a second example. consider again the BCD digit-packing program shown in
Figure 2.31. The 68000 code for this routine is shown in Figure 3.32. The two ASCII
bytes are brought into registers DO and D1 The LSL instruction shifts the byte in

MOVEAL #LOC.AO A0 points to data.

MOVED (A0)+.DO Load first hyte into DO.

L.SL.B #-4.D0 Shifr left by 4 bit positions.
NMOVEB (A0).DI Load second byvte into DL
ANDILDB #S1.D1 C('leay high-order 1 bits to zero.
OR.B D0.D1 C'oncatenate the digits.

MOVED D1.PACKED Store the result.

Figure 3.32 Use of 68000 logic instructions in packing BCD digits.

151

152

CHAPTER 3 -+ ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

DO four bit positions to the left. filling the low-order four bits with zeros. The first
entry in the operand field of this instruction is a count that indicates the number of
bit positions by which the operand is to be shifted. Table C.4 shows that the count
may also be specified in another data register. Hence. the same effect can be achieved
with

LSL.B D2.D0

if the contents of D2 have been set to 4 earlier. The ANDI instruction sets the high-
order four bits of the second byte to 0. Finally. the 4-bit patterns that are the desired
BCD codes are combined in D1 with the OR instruction and stored in memory location
PACKED.

3.15 PROGRAM EXAMPLES

In this section, we give the 68000 version of the programs for dot product. byte sorting.
and linked-list operations that were described in Chapter 2.

3.15.1 VECTOR DOT PRODUCT PROGRAM

The program in Figure 2.33 computes the dot product of two vectors. AVEC and BVEC.
The 68000 version is shown in Figure 3.33. The two programs are identical except for
the use of the DBRA instruction to control the loop. Using this instruction necessitates
reducing the contents of the count register DO by 1, as explained in Section 3.11.2.

Note that the MULS instruction multiplies two signed 16-bit numbers and produces
a 32-bit product. We have assumed that the vector elements are represented in 16-bit
words and that the dot product fits in 16 bits. All addresses are treated as 32-bit
values.

MOVEA L #AVEC.AL Address of first vector,
MOVEAL #DBVEC.A2 Address of second vector.
MOVE N.DO Number of elements.
SUBQ #1.D0 Adjust count to use DBRA.
CLR D1 Use D1 as accunmilator.

LOOP MOVE ({A1)+.D2 Get element from vector A,
MULS (A2)+.D2 Multiply element from vector I3,
ADD D2.D1 Accunntlate product.
DBRA DO.LOOP
AMOVE DI.DOTPROD

Figure 3.33 A 68000 program for computing the dot product of two vectors.

3.15 PROGRAM EXAMPLES
3.15.2 BYTE-SORTING PROGRAM

Now let us consider the program to sort a list of bytes given in Figure 2.34. This program
performs an in-place sort using the straight selection algorithm to put a list of characters
in alphabetic order. The list is stored in memory locations LIST through LIST +n — 1.
with each character represented in the ASCII code and occupying one byte. The value
nis a 16-bit value stored at address N.

The C-language program for this task is reproduced in Figure 3.34a. The 68000
implementation of this task is given in Figure 3.345. This program closely parallels the
program in Figure 2.34h. The programs differ in some minor respects, as follows.

for (j=n-lij>0j=j—1)
{for (k=j-1:k>=0k=k-1)
{if (LIST[A] > LIST{})
{ TEMDP = LISTI[A]:
LIST[A] = LIST[j]:
LIST{jI = TEMDP:
}

(a) C-language program for sorting

AMOVEAL #LIST.AL Pointer to the start of the list.
NMOVE N.D1 Initialize outer loop
SUBQ #1.D1 index jin DL
OUTER MOVE D1.D2 [uitialize inner loop
SUBQ #1.D2 index & in D2
NOVE.DB (A1.D1).D3 Current maximum value in D3.
INNER NP D3.(A1.D2) If LIST(A) < [D3].
BLE NEXT do not exchange.
NMOVE.D (A1.D2).(A1.D1) Interchange LIST(A)
AMOVE.DB D3.(A1.D2) and LIST()) and load
ANOVE.DB (A1.D1).D3 new maximu into D3,
NEXT DBRA D2.INNER Decrement counters A and
SUBQ #1.D1 and branch back
BGT OUTER if not finished.

(b) 68000 program implementation

Figure 3.34 A 68000 byte-sorting program.

153

154

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

The MOVE instruction of the 68000 allows both the source and the destination
operands 1o be in the memory. Hence. when interchanging two entries. the value of
LIST(k) 1s copied directly into LIST(/). This eliminates the need for the temporary
register R+ used in Figure 2.34 and lcads to a slight reorganization of the program
instructions.

Another difference is that we have used the DBRA instruction to terminate the inner
loop in the program because the index 4 runs down to . Note that it is not possible to use
the DBRA instruction in the outer loop because the final value for j is | rather than 0.

3.15.3 LINKED-LIST INSERTION AND DELETION SUBROUTINES

Figure 3.35 gives a 68000 subroutine to insert a record in linked list. This program is
identical to the program in Figure 2.37. Note that the CMPA version of the Compare in-
struction is used to compare address values. and the CMP version is used for data values.

A 68000 program to delete a record from a linked list is given in Figure 3.36. This
program corresponds directly to the program given in Figure 2.38.

Subroutine
INSERTION CNDPA L #0.\0 AO s RHEAD.
BT HEAD
MOVEAL AlLAO Al is RNEWREC
BTS
HEAD CADP.L (AOL AL Compare 1D of new record to head.
BGT SEARCH
MOVEL AOHAD New record becomes head.,
MOVEAL ALAo
RTS
SEARCH MOVEAL A0AR A2 is ROURRENT.
LOOP MOVEATL HA2)A3 A3 is RNENT.
CNIPALL #0.\0
BEQ TAIL
CNP.L (A3 (AL
BLT INSERT
MOVEAL A3A2 Cro to next record.
BRA LOODP
INSERT MOVE.L A2 (A
TAITL MOVIELL ALI(A2)
RTS

Figure 3.35 A 68000 subroutine to insert a record in a linked list.

3.15 PROGRAM EXAMPLES

Subroutine

DELETION CMP.L (AD).DI D1 is RIDNUML
BGT SEARCH
MOVEAL {(A0).A0 Delete head record.
RTS
SEARCH NMOVEAL AOA2 A2 is RCURRENT.
L.LOODP MOVEAL 1(A2).A3 A3 is RNEXNT.
CNDP.L (A3).D1
BEQ DELETE
MOVEAL A3AZ
BRA LOOP
DELETE MOVELL 1(A3).D2 D2 is RTEMP.
MOVE.L D2.4(A2)
RTS

Figure 3.36 A 68000 subroutine to delete a record from a linked list.

As with the generic subroutines in Figures 2.37 and 2.38. the insertion subroutine
in Figure 3.35 assumes that the ID number of the new record does not match that of any
record already in the list. and the deletion subroutine in Figure 3.36 assumes that there
exists a record in the list with an ID number that does match the contents of RIDNUM.
Problems 3.49 and 3.50 consider how the subroutines should be changed to signal an
error if the assumptions are not true.

PART III
THE IA-32 PENTIUM EXAMPLE

The Intel Corporation uses the generic name Intel Architecture (IA) for processors in its
product line. We will describe IA processors that operate with 32-bit memory addresses
and 32-bit data operands. They are referred to as IA-32 processors. and the most recent
is the Pentium series. The first IA-32 processor was the 80386, introduced in 1985.
Since then. the 80486 (1989). Pentium (1993). Pentium Pro (1995). Pentium 11 (1997).
Pentium 111 (1999). and Pentium 4 (2000) have been implemented. These processors
have increasing levels of performance. achieved through a number of architectural
and microelectronic technology improvements. The evolution of the 1A family will be
explained in Chapter I'1. The latest members of the family have specialized instructions
for handling multimedia graphical information and for vector data processing. These
aspects of the instruction set will be considered briefly here and also in Chapter 1'1. The
JA-32 instruction set is very large. We will restrict our attention to the basic instructions
and addressing modes. Detailed information on the IA-32 instruction set architecture
and assembly language can be found at the Intel web site [8] and in the books by Brey
[9}. Dandamudi [10]. and Tabak [7].

155

156

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

3.16 REGISTERS AND ADDRESSING

In the TA-32 architecture. memory is byte addressable using 32-bit addresses, and
instructions operate on data operands of § or 32 bits. These operand sizes are called
byte and doubleword in Intel terminology. A 16-bit operand was called a word in earlier
16-bit Intel processors. Little-endian addressing is used. as described in Section 2.2.2.
Multiple-byte data operands may start at any byte address location. They need not be
aligned with any particular address boundaries in the memory.

3.16.1 TA-32 REGISTER STRUCTURE

The processor registers are shown in Figure 3.37. While there are some exceptions.
the eight 32-bit registers labeled RO through R7 are general-purpose registers that
can be used to hold either data operands or addressing information. There are eight
floating-point registers for holding doubleword or quadword (64 bits) floating-point
data operands. The floating-point registers have an extension field to provide a total
length of 80 bits. not shown in Figure 3.37. The extra bits are used for increased accuracy
while floating-point numbers are operated on in the processor. Chapter 6 provides a
discussion of floating-point number representation and operations. This topic is not
discussed here in Chapter 3.

IA-32 architectures are based on a memory model that associates ditferent areas
of the memory, called segments, with different usages. The code segment holds the
structions of a program. The stack segment contains the processor stack. and four
data segments are provided for holding data operands. The six segment registers shown
in Figure 3.37 contain selector values that are used in locating these segments in the
memory address space. The detailed function of these registers will be explained in
Chapter 11 where we discuss the IA family. Here. we will not need to know these
details. A 32-bit address in the 1A-32 architecture can be presumed to access memory
locations anywhere in the program. processor stack, or data areas.

The two registers shown at the bottom of Figure 3.37 are the Instruction Pointer.
which serves as the program counter and contains the address of the next instruction
to be executed. and the Status Register. which holds the condition code flags (CF. ZF.,
SF. OF). These flags contain information about the results of arithmetic operations, as
will be discussed in Section 3.19. The program execution mode bits (IOPL. IF. TF) are
associated with input/output operations and interrupts, discussed in Chapter 4.

The TA-32 general-purpose registers allow for compatibility with the registers of
earlier 8-bit and 16-hit Intel processors. In those processors, some restrictions applied
to the specific usage of the different registers in programs. Figure 3.38 shows the
association between the 1A-32 registers and the registers in earlier processors. The
eight general-purpose registers are grouped into three difterent types: data registers for
holding operands. and pointer and index registers for holding addresses and address
indices used to determine the effective address of a memory operand.

InIntel's original 8-bit processors. the data registers were called A. B. C. and D. In
later 16-bit processors, these registers were labeled AX. BX. CX. and DX. The high-
and low-order bytes in each register are identified by suffixes H and L. For example,

3.16 REGISTERS AND ADDRESSING

31 0
RO
R1
8
|, General
purpose
registers
R7
63 0
FPO
FPI
8
> Floating-point
registers
FP7
16 0
Code Segment CS
Stack Segment SS
DS L 6
ES Seement
Data Segments . registers
ES
GS
31 0
| | Instruction pointer
31 131211 9 87 6 0
I | l I I | l \ | l Status register
10PL - l.-np;l,[/,(?l]n,p}”] L CF - Carry
privilege leve ZF - Zero
OF - Overflow SF - Sien
> &
IF - Interrupt enable TF - Trap

Figure 3.37 |A-372 register structure.

157

158 CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

General
purpose
naming 31 16 15 8 7 0
RO EAX | [AH AL
N Y
AX
Rl ECX [T CL
k Yo Data
X I registers
R2 EDX | | DH | DL
~ \2
DX
R3 EBX | | BH BL
e Y
BX

R4 ESP SP

Pomter
registers

R5 EBP BP

registers
DI

R7 EDI

Instruction
pointer

EIP 1P

Status
register

| | |
I | |
Ro ESI | | S | dex

EFLAGS FLAGS

Figure 3.38 Compaitibility of the IA-32 register structure with earlier
Intel processor register structures.

the two bytes in register AX are referred to as AH and AL. In [A-32 processors. the
prefix E is used to identify the corresponding “extended™ 32-bit registers: EAX. EBX.
ECX. and EDX. The E-prefix labeling is also used for the other 32-bit registers shown
in Figure 3.38. They are the extended versions of the corresponding 16-bit registers
used in earlier processors.

This register labeling is used in Intel technical documents and in other descriptions
of Intel processors. The reason that the historical labeling has been retained is that
Intel has maintained upward compatibility over its processor line. That is. programs in
machine language representation developed for the earlier 16-bit processors will run
correctly on current 1A-32 processors without change if the processor state is set to
do so. We will use the E-prefix register labeling in giving examples of assembly lan-
guage programs because these mnemonics are used in current versions of the assembly
language for IA-32 processors. The AL. BL. etc. labeling will also be used for byte
operands when they are operated on in the low-order eight bits of the corresponding
32-bit register.

The TA-32 processor state can be switched dynamically between 32-bit operation
and 16-bit operation during program execution on an instruction by instruction basis
by the use of instruction prefix bytes. We will discuss this feature in Chapter 11.

3.16 REGISTERS AND ADDRESSING

3.16.2 1A-32 ADDRESSING MODES

The TA-32 architecture has a large and flexible set of addressing modes. They are
designed to access individual data items or data items that are members of an ordered
list that begins at a specified memory address. We give full definitions for these modes.
along with the way that they are expressed in assembly language.

The basic modes. which are available in most processors. have been described in
Section 2.5. They are: Immediate. Absolute. Register, and Register indirect. Intel uses
the term Direct for the Absolute mode. so we will do the same here. There are also
several addressing modes that provide more flexibility in accessing data operands in the
memory. The most flexible mode described in Section 2.5 is the Index mode that has the
general notation X(Ri. Rj). The effective address of the operand. EA. is calculated as

EA = [Ri] + [Rj] + X

where Ri and R j are general-purpose registers and X is a constant. The registers Ri and

R j are called hase and index registers. respectively. and the constant X is called a dis-

placement. The 1A-32 addressing modes include this mode and simpler variations of it.
The full set of 1A-32 addressing modes is defined as follows:

Immediate mode — The operand is contained in the mstruction. It is a signed 3-bit
or 32-bit number. with the length being specified by a bit in the OP code of the
instruction. This bit is 0 for the short version and | for the long version.

Direct mode — The memory address of the operand is given by a 32-bit value in
the instruction.

Register mode — The operand is contained in one of the eight general-purpose
registers specitied in the instruction.

Register indirect mode — The memory address of the operand is contained in one
of the eight general-purpose registers specified in the instruction.

Base with displacement mode — An 8-bit or 32-bit signed displacement and one
of the eight general-purpose registers to be used as a base register are specitied
in the instruction. The effective address of the operand is the sum of the contents
of the base register and the displacement.

Index with displacement mode — A 32-bit signed displacement. one of the eight

general-purpose registers 1o be used as an index register, and a scale factor of
I. 2. 4. or 8. are specified in the instruction. To obtain the effective address of

the operand. the contents of the index register are multiplied by the scale factor
and then added to the displacement.

Base with index mode — Two of the eight general-purpose registers and a scale
factor of 1. 2. 4. or 8. are specified in the instruction. The registers are used as
base and index registers. and the effective address of the operand is calculated
as follows. The contents of the index register are multiplied by the scale factor
and added to the contents of the base register.

Base with index and displacement node — An 8-bitor 32-bitsigned displacement.
two of the eight general-purpose registers. and a scale factor of 1. 2.4, or 8. are
specified in the instruction. The registers are used as base and index registers.

159

160

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

and the effective address of the operand is calculated as follows. The contents
of the index register are multiplied by the scale factor and then added to the
contents of the base register and the displacement.

The IA-32 addressing modes and the way that they are expressed in assembly language
are given in Table 3.3. The calculation of the effective address of the operand is also
specified in the table. As specified in the footnotes, register ESP cannot be used as an
index register. As we will see later. it is used as the processor stack pointer. We will

now give some examples of how the addressing modes are used to access operands.

In two-operand instructions, the source (src) and destination (dst) operands are
specified in the assembly language in the order

OPcode dst.sre

This ordering is the same as in the ARM architecture described in Part 1 of this chapter.
butit is opposite to that used in Chapter 2 and in the Motorola 68000 processor described
in Part II of this chapter. For example. the Move instruction

MOV dst.src

performs the operation

dst <« [src]
Table 3.3 1A-32 addressing modes
Name Assembler syntax Addressing function
Immediate Value Operand = Value
Direct Location EA = Location
Register Reg EA = Reg
that is, Operand = [Reg]
Register indirect [Reg] EA = [Reg]
Base with [Reg + Disp] EA = [Reg} + Disp
displacement
Index with [Reg * S + Disp] EA = [Reg] x S + Disp
displacement
Base with index [Regl + Reg2 * S} EA = [Regl] + [Reg2] x S
Base with index [Regl + Reg2 * S + Disp] EA = [Reg!] + [Reg2] x S + Disp
and displacement
Value == an 8- or 32-bit signed number

Location == a 32-bit address

Reg, Regl, Reg2 =: one of the general purpose registers EAX, EBX, ECX,
EDX, ESP, EBP, ESI, EDI, with the exception that
ESP cannot be used as an index register

Disp == an 8- or 32-bit signed number, except that in the Index with
displacement mode it con only be 32 bits.

S == ascale factorof 1,2, 4, or 8

3.16 REGISTERS AND ADDRESSING

Itis convenient to use the Move instruction to illustrate the [A-32 addressing modes.
The instruction

MOV EAX.,25

uses the Immediate addressing mode to move the decimal value 25 into the EAX
register. A number given in this form using the digits O through 9 is assumed to be in
decimal notation. The suffixes B and H are used to specify binary and hexadecimal
numbers, respectively. For example, the instruction

MOV EAX,3FAOOH

moves the hex number 3FAQOO into EAX.
The instruction

MOV EAX,LOCATION

uses the Direct addressing mode to move the doubleword at the memory location speci-
fied by the address label LOCATION into register EAX. This assumes that LOCATION
has been defined as an address label for a memory location in the data declaration sec-
tion of the assembly language program. We will see how to do this in Section 3.18. If
LOCATION represents the address 1000, then this instruction moves the doubleword
at 1000 into EAX.

The distinction between the Immediate addressing mode and the Direct addressing
mode in IA-32 assembly language programs warrants some discussion because it can
be somewhat confusing. Consider the following case: It is sometimes useful to give
symbolic names to numerical constants that are used as immediate operands. The
assembler directive

NUMBER EQU 25

is used to associate the symbolic name NUMBER with the decimal value 25, as de-
scribed in Section 2.6.1. If this is done, the instruction

MOV EAX,NUMBER

is interpreted by the assembler to mean that NUMBER is an immediate operand to be
moved into register EAX. On the other hand, if NUMBER is defined as an address
label, this instruction is interpreted as using the Direct addressing mode.

In many assembly languages, this potentially confusing situation is avoided by
using a special symbol, such as #, as a prefix to denote the Immediate addressing mode.
In the IA-32 assembly language, square brackets can be used to explicitly indicate the
Direct addressing mode, as in the instruction

MOV EAX,[LOCATION]

However, the brackets are not needed if LOCATION has been defined as an address
label.

When it is necessary to treat an address label as an immediate operand, the assem-
bler directive OFFSET is used. For example, the instruction

MOV EBX, OFFSET LOCATION

161

162

CHAPTER 3 + ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

moves the value of the address label LOCATION, for example 1000, using the Imme-
diate addressing mode. into the EBX register. The EBX register can then be used in the
Register indirect mode in the instruction

MOV EAX [EBX]

to move the contents of the memory location whose address, LOCATION, is contained
in register EBX into register EAX. The word OFFSET as an assembler directive is
chosen to indicate that an address is always considered as a relative distance away
from the starting point of the memory segment containing the location. In all of these
examples, the Register mode has been used to specify the destination.

These examples have illustrated the basic addressing modes: Immediate, Direct,
Register, and Register indirect. The remaining four addressing modes provide more
flexibility in accessing data operands in the memory.

The Base with displacement mode is illustrated in Figure 3.39a. Register EBP is
used as the base register. A doubleword operand that is 60 byte locations away from
the base address of 1000, that is, at address 1060, can be moved into register EAX by
the instruction

MOV EAX.[EBP + 60]

The IA-32 instructions and addressing modes can be used to operate on byte
operands as well as doubleword operands. For example, still assuming that the base
register EBP contains the address 1000, the byte operand at address 1010 can be loaded
into the low-order byte position in the EAX register by the instruction

MOV AL.[EBP + 10]

The assembler selects the version of the Move OP code that is used for byte data because
the destination, AL, is the low-order byte position of the EAX register.

The addressing mode that provides the most flexibility is the Base with index and
displacement mode. An example is shown in Figure 3.39b, using EBP and ESI as
the base and index registers. This example shows how the mode is used to access a
particular doubleword operand in a list of doubleword operands. The list begins at a
displacement of 200 away from the base address 1000. Using a scale factor of 4 on
the index register contents, successive doubleword operands at addresses 1200, 1204,
1208, ... can be accessed by using the sequence of indices O, I, 2, ... in the index
register ESI. In the example shown in the figure, the doubleword at address 1360 (that
is, 1000 + 200 + 4 x 40) is accessed when the index register contains 40. This operand
can be loaded into register EAX by the instruction

MOV EAX.[EBP + ESI"4 + 200]

The use of a scale factor of 4 in this addressing mode makes it easy to access successive
doubleword operands of the list in a program loop by simply incrementing the index
register by 1 on each pass through the loop. Having discussed these two modes in some
detail, the closely related Index with displacement mode and Base with index mode
should be easy to understand.

Before leaving this discussion of addressing modes, a comment on an aspect of the
Table 3.3 entries is useful. It would appear that the Base with displacement mode is

Main
memory
address

1600

1060

ft———— doubleword ————»|

Operand

Operand address (EA) = |[EBP| + 60

3.16 REGISTERS AND ADDRESSING

1000

Base register EBP

-

60 = displacement

!

(a) Base with displacement mode, expressed as [EBP + 60]

1000

1200

List ot 4-byte
(doubleword) J
data items .

1360

Operand

1000
Base register EBP
—
40
Index register ESI

tJ

00 = displacement

1

scale factor =4

60 = [Index register] X 4

1

Operand address (EA) = {EBP] + [ESI] X 4 + 200

(b) Base with displacement and index mode, expressed as [EBP + ESI ™ 4 + 200]

Figure 3.39 Examples of addressing modes in the IA-32 architecture.

163

164

CHAPTER 3 +« ARM, MOTOROLA, AND INTEL INSTRUCTION SETS

redundant because the same effect could be obtained by using the Index with displace-
ment mode with a scale factor of 1. But the former mode is useful because it is encoded
with one less byte. In addition, the displacement size in the Index with displacement
mode can only be 32 bits.

A discussion of how the addressing modes are encoded into machine instructions
is included in the next section. More detail is provided in Appendix D.

3.17 JA-32 INSTRUCTIONS

The TA-32 instruction set is extensive. It is encoded in a variable-length instruction
format that does not have a fully regular layout. We will examine the instruction format
in Section 3.17.1. Most of the IA-32 instructions have either one or two operands. In
the two-operand case. only one of the operands can be in the memory. The other must
be in a processor register. In addition to the usual instructions for moving data between
the memory and the processor registers. and for performing arithmetic operations,
the instruction set includes a number of different logical and shift/rotate operations
on data. Byte string instructions are included for nonnumeric data processing. Push
and pop operations for manipulating the processor stack are directly supported in the
instruction set.

We will begin by introducing a small set of instructions and show how they can be
used in a simple complete program. The instruction

ADD dst.sre
performs the operation
dst <« [dst] + [src]
and, as we have seen earlier,
MOV dst.sre
performs the operation
dst <« |sre]

Suppose that two data operands are in registers EAX and EBX. Their sum can be
computed in EAX and stored in the memory at location SUM by the two-instruction
sequence

ADD EAX.EBX
MOV SUM.EAX
Since only one operand can be in memory in the two-operand instructions, the operation
C —[A] + [B]

involving three memory locations A, B. and C. can be performed using the instruction

